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Abstract

The parity of the length of paths and cycles is a classical and well-studied topic in graph
theory and theoretical computer science. The parity constraints can be extended to the
label constraints in a group-labeled graph, which is a directed graph with a group label on
each arc. Recently, paths and cycles in group-labeled graphs have been investigated, such
as finding non-zero disjoint paths and cycles.

In this paper, we present a solution to finding an s–t path in a group-labeled graph with
two labels forbidden. This also leads to an elementary solution to finding a zero path in a
Z3-labeled graph, which is the first nontrivial case of finding a zero path. This situation in
fact generalizes the 2-disjoint paths problem in undirected graphs, which also motivates us
to consider that setting. More precisely, we provide a polynomial-time algorithm for testing
whether there are at most two possible labels of s–t paths in a group-labeled graph or not,
and finding s–t paths attaining at least three distinct labels if exist. We also give a necessary
and sufficient condition for a group-labeled graph to have exactly two possible labels of s–t
paths, and our algorithm is based on this characterization.
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1 Introduction

1.1 Background

The parity of the length of paths and cycles in a graph is a classical and well-studied topic in
graph theory and theoretical computer science. As the simplest example, one can easily check
the bipartiteness of a given undirected graph, i.e., we can determine whether it contains a cycle
of odd length or not. This can be done in polynomial time also in the directed case by using
the ear decomposition. It is also an important problem to test whether a given directed graph
contains a directed cycle of even length or not, which is known to be equivalent to Pólya’s
permanent problem [12] (see, e.g., [11]). A polynomial-time algorithm for this problem was
devised by Robertson, Seymour, and Thomas [14].

In this paper, we focus on paths connecting two specified vertices s and t. It is easy to
test whether a given undirected graph contains an s–t path of odd (or even) length or not,
whereas the same problem is NP-complete in the directed case [10] (follows from [5]). A natural
generalization of this problem is to consider paths of length p modulo q. One can easily see
that, when q = 2, both of the following problems generalize the problem of finding an odd (or
even) s–t path in an undirected graph:

• finding an s–t path of length p modulo q in an undirected graph, and

• finding an s–t path whose length is NOT p modulo q in an undirected graph, which is
equivalent to determining whether all s–t paths are of length p modulo q or not.

Although these two generalizations are similar to each other, they are essentially different in
the case of q ≥ 3. In fact, a linear-time algorithm for the second generalization was given by
Arkin, Papadimitriou, and Yannakakis [1] for any q, whereas not so much was known about the
first generalization.

Recently, as another generalization of the parity constraints, paths and cycles in a group-
labeled graph have been investigated, where a group-labeled graph is a directed graph with
each arc labeled by a group element. In a group-labeled graph, the label of a walk is defined as
the sum (or the ordered product when the underlying group is non-abelian) of the labels of the
traversed arcs, where each arc can be traversed in the converse direction and then the label is
inversed (see Section 2.1 for the precise definition). Analogously to paths of length p modulo q,
it is natural to consider the following two problems: for a given element α,

(I) finding an s–t path of label α in a group-labeled graph, and

(II) finding an s–t path whose label is NOT α in a group-labeled graph, which is equivalent
to determining whether all s–t paths are of label α or not.

Note that, when we consider Problem (I) or (II), by changing uniformly the labels of the arcs
incident to s if necessary, we may assume that α is the identity of the underlying group. Hence,
each problem is equivalent to finding a zero path or a non-zero path in a group-labeled graph.
In what follows, we assume the black-box access to the underlying group, i.e., we can perform
elementary operations for it in constant time (see Section 2.1 for the precise assumption).

If the underlying group is Z2 = Z/2Z = ({0, 1},+) and the label of each arc is 1, then the
label of a path corresponds to the parity of its length because −1 = 1 in Z2. This shows that
both of these two problems generalize the problem of finding an odd (or even) s–t path in an
undirected graph. We note that, in a Z2-labeled graph, finding an s–t path of label α ∈ Z2 is
equivalent to finding an s–t path whose label is not α + 1 ∈ Z2, but such equivalence cannot
hold for any other nontrivial group.

As shown in Section 2.2, Problem (II) can be reduced to testing whether a group-labeled
graph contains a non-zero cycle, whose label is not the identity. With this observation, Problem
(II) can be easily solved in polynomial time for any underlying group. We mention that there
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are several results for packing non-zero paths [2, 3, 18,20] and non-zero cycles [9, 19] with some
conditions.

On the other hand, the difficulty of Problem (I) is heavily dependent on the underlying group
Γ. When Γ ≃ Z2, since Problems (I) and (II) are equivalent as discussed above, it can be easily
solved in polynomial time. When Γ = Z, Problem (I) is NP-complete since the directed s–t
Hamiltonian path problem reduces to this problem by labeling each arc with 1 ∈ Z and letting
α := n−1 ∈ Z, where n denotes the number of vertices. Huynh [8] showed the polynomial-time
solvability of Problem (I) for any fixed finite abelian group, which is deeply dependent on the
graph minor theory.

To investigate the gap between Problems (I) and (II), we make a new approach to these
problems by generalizing Problem (II) so that multiple labels are forbidden. In this paper,
we provide a solution to the case when two labels are forbidden. Our result also leads to an
elementary solution to the first nontrivial case of Problem (I), i.e., when Γ ≃ Z3 = Z/3Z =
({0,±1},+).

1.2 Our contribution

Let Γ be an arbitrary group. For a Γ-labeled graph G and two distinct vertices s and t, let
l(G; s, t) be the set of all possible labels of s–t paths in G. Our first contribution is to give a char-
acterization of Γ-labeled graphs G with two specified vertices s, t such that l(G; s, t) = {α, β},
where α and β are distinct elements in Γ. Roughly speaking, we show that l(G; s, t) = {α, β} if
and only if G is obtained from “nice” planar graphs (and some trivial graphs) by “gluing” them
together (see Section 3.3). It is interesting that the planarity, which is a topological condition,
appears in the characterization.

There exists an easy characterization of triplets (G, s, t) with |l(G; s, t)| = 1, which is used
to solve Problem (II) (see Section 2.2 for details). Our characterization leads to the first non-
trivial classification of Γ-labeled graphs in terms of the possible labels of s–t paths, and the
classification is complete when Γ ≃ Z3.

We also show an algorithmic result, which is our second contribution. Based on the fact that
our characterization can be tested in polynomial time, we present a polynomial-time algorithm
for testing whether |l(G; s, t)| ≤ 2 or not and finding at least three s–t paths whose labels are
distinct if exist (see Theorem 9). In particular, our algorithm leads to an elementary solution
to Problem (I) when Γ ≃ Z3, i.e., for each α ∈ Z3, we can test whether α ∈ l(G; s, t) or not,
and find an s–t path of label α if exists.

Note again that our results are not dependent on Γ, which can be non-abelian or infinite
(as long as we can efficiently perform elementary operations for Γ).

1.3 k-disjoint paths problem

Problem (I) in a Z3-labeled graph in fact generalizes the 2-disjoint paths problem, which also
motivates us to consider the situation when two labels are forbidden. The 2-disjoint paths
problem is to determine whether there exist two vertex-disjoint paths such that one is from s1
to t1 and the other from s2 to t2 for distinct vertices s1, s2, t1, t2 in a given undirected graph.
We can reduce the 2-disjoint paths problem to Problem (I) in a Z3-labeled graph as follows: let
s := s1 and t := t2, replace every edge in the given graph with an arc with label 0, add one arc
from t1 to s2 with label 1, and ask whether the constructed Z3-labeled graph contains an s–t
path of label 1 or not. If the answer is YES, then there exist desired two disjoint paths, and
otherwise there do not.

The 2-disjoint paths problem can be solved in polynomial time [15–17], and the following
theorem characterizes the existence of two disjoint paths.
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Theorem 1 (Seymour [16]). Let G = (V,E) be an undirected graph and s1, t1, s2, t2 ∈ V distinct
vertices. Then, there exist two vertex-disjoint paths Pi connecting si and ti (i = 1, 2) if and
only if there is no family of disjoint vertex sets X1, X2, . . . , Xk ⊆ V \ {s1, t1, s2, t2} such that

1. NG(Xi) ∩Xj = ∅ for distinct i, j ∈ {1, 2, . . . , k},
2. |NG(Xi)| ≤ 3 for i = 1, 2, . . . , k, and

3. if G′ is the graph obtained from G by deleting Xi and adding a new edge joining each pair
of distinct vertices in NG(Xi) for each i ∈ {1, 2, . . . , k}, then G′ can be embedded on a
plane so that s1, s2, t1, t2 are on the outer boundary in this order.

Our characterization (Theorem 12) of group-labeled graphs with exactly two possible labels
of s–t paths is inspired by Theorem 1, and we use this theorem in the proof.

We next mention that the k-disjoint paths problem can also be regarded as a special case
of Problem (I) for any fixed integer k ≥ 2. This observation was in fact described in [8, p. 11].
However, their reduction is inadequate, which cannot distinguish two pairs of disjoint si–ti path
and sj–tj path and disjoint si–sj path and ti–tj path for any distinct i, j.

The k-disjoint paths problem is, for a given undirected graph with 2k distinct vertices si, ti
(i = 1, 2, . . . , k), to determine whether there exist k vertex-disjoint paths such that each path
connects si and ti. This problem can be formulated as Problem (I) using the alternating group
A2k−1 (which is indeed isomorphic to Z3 when k = 2) as follows: replace each edge with an arc
with label id ∈ A2k−1, add an arc from ti to si+1 with label (2i− 1 2i+1 2i) ∈ A2k−1 for each
i = 1, 2, . . . , k − 1, and ask whether there exists an s1–tk path of label

σ := (2k − 3 2k − 1 2k − 2) · · · (3 5 4)(1 3 2)

or not. It is easy to check that σ is the unique permutation mapping 1 to 2k − 1 which can be
constructed in such an A2k−1-labeled graph.

Although the k-disjoint paths problem can be solved in polynomial time for fixed k [13], its
solution requires sophisticated arguments based on the graph minor theory. This suggests that
Problem (I) is a challenging problem even if the size of the underlying group is bounded.

1.4 Organization

The rest of this paper is organized as follows. In Section 2, we define several terms, notations,
and operations, and describe well-known results. Section 3 is devoted to presenting our results:
the efficient solvability of the problem to find an s–t path with two labels forbidden, and a
characterization of Γ-labeled graphs with exactly two possible labels of s–t paths. Their verifi-
cations are shown in Sections 4 and 5, which provide a concrete description of a polynomial-time
algorithm for the problem with its correctness and a proof of our characterization, respectively.

2 Preliminaries

2.1 Terms and notations

Throughout this paper, let Γ be a group (which can be non-abelian or infinite), for which we
usually use multiplicative notation with denoting the identity by 1Γ (we sometimes use additive
notation with denoting the identity by 0, e.g., when Γ ≃ Z3). We assume that elementary
operations for Γ can be performed, i.e., the following procedures can be done in constant time
for any α, β ∈ Γ: getting the inverse element α−1 ∈ Γ, computing the product αβ ∈ Γ, and
testing the identification α = β. A directed graph G = (V,E) with a mapping ψG : E → Γ
(called a label function) is called a Γ-labeled graph.
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2.1.1 Graphs

Let G = (V,E) be a directed graph. For vertices v0, v1, . . . , vl ∈ V and arcs e1, e2, . . . , el ∈ E
with ei = vi−1vi or ei = vivi−1 (i = 1, 2, . . . , l), a sequence W = (v0, e1, v1, e2, v2, . . . , el, vl) is
called a walk in G. A walk W is called a path (in particular, a v0–vl path) if v0, v1, . . . , vl are
distinct, and a cycle if v0, v1, . . . , vl−1 are distinct and v0 = vl. We call v0 and vl (which may
coincide) the end vertices of W , and each vi (1 ≤ i ≤ l− 1) an inner vertex on W . For i, j with
0 ≤ i < j ≤ l, let W [vi, vj ] denote the subwalk (vi, ei+1, vi+1, . . . , ej , vj) of W . Let W̄ denote
the reversed walk of W , i.e., W̄ = (vl, el, . . . , v1, e1, v0).

LetX ⊆ V be a vertex set. We denote by δG(X) the set of arcs betweenX and V \X inG and
by NG(X) the set of vertices adjacent to X in G, i.e., δG(X) := { e = xy ∈ E | |{x, y}∩X| = 1 }
and NG(X) := { y ∈ V \X | δG(X) ∩ δG({y}) ̸= ∅ }. We denote a singleton {x} by its element
x when it makes no confusion.

Let G[X] := (X,E(X)) denote the subgraph of G induced by X, where E(X) := { e =
xy ∈ E | {x, y} ⊆ X }. We denote by G − X the subgraph of G obtained by removing all
vertices in X, i.e., G − X = G[V \ X]. For an arc set F ⊆ E, we also denote by G − F
the subgraph of G obtained by removing all arcs in F , i.e., G − F = (V,E \ F ). Define
G[[X]] := G[X ∪NG(X)]− E(NG(X)).

For an integer k ≥ 0 and a vertex set X ⊊ V with |X| = k, we call X a k-cut in G if G−X
is not connected. A directed graph is called k-connected if it contains more than k vertices and
no k′-cut for every k′ < k. A k-connected component of G is a maximal k-connected induced
subgraph G[X] (X ⊆ V with |X| ≥ k).

For vertex sets X,Y, Z ⊆ V , we say that X separates Y from Z in G if every two vertices
y ∈ Y \ X and z ∈ Z \ X are contained in different connected components of G − X. In
particular, if X separates Y and Z in G and Y \X ̸= ∅ ̸= Z \X, then X is an |X|-cut in G.

Suppose that G is embedded on a plane. We call a unique unbounded face of G the outer
face of G, and any other face an inner face. For a face F of G, let bd(F ) denote the closed
walk (whose end vertices coincide with each other) obtained by walking the boundary of F in
an arbitrary direction from an arbitrary vertex on it.

2.1.2 Labels

Let G = (V,E) be a Γ-labeled graph with a label function ψG, and W = (v0, e1, v1, . . . , el, vl)
a walk in G. The label ψG(W ) of W is defined as the ordered product ψG(el, vl) · · ·ψG(e2, v2) ·
ψG(e1, v1), where ψG(ei, vi) := ψG(ei) if ei = vi−1vi and ψG(ei, vi) := ψG(ei)

−1 if ei = vivi−1.
Note that, for the reversed walk W̄ of W , we have ψG(W̄ ) = ψG(W )−1. In particular, since
an arc uv with label α and an arc vu with label α−1 are equivalent, we identify such two arcs.
We say that W is balanced (or a zero walk) if ψG(W ) = 1Γ and unbalanced (or a non-zero walk)
otherwise, and also that G is balanced if G contains no unbalanced cycle. Note that whether a
cycle is balanced or not does not depend on the choices of the direction and the end vertex, since
ψG(C̄) = ψG(C)

−1 and ψG(C
′) = ψG(e1)·ψG(C)·ψG(e1)

−1, where C = (v0, e1, v1, . . . , el, vl = v0)
and C ′ = (v1, e2, v2, . . . , el, vl = v0, e1, v1). Hence, when we consider whether a cycle is balanced
or not, we can choose the direction and the end vertex arbitrarily.

For distinct vertices s, t ∈ V , let l(G; s, t) be the set of all possible labels of s–t paths in
G. When l(G; s, t) = {α} for some α ∈ Γ, we also denote the element α itself by l(G; s, t).
Without loss of generality, we may assume that there is no vertex v ∈ V that is not contained
in any s–t path, since such a vertex does not make any effect on l(G; s, t). To consider only
such cases, let D be the set of all triplets (G′, s, t) such that G′ is a Γ-labeled graph with two
specified vertices s, t ∈ V (G′) in which every vertex is contained in some s–t path. The following
lemma guarantees that one can efficiently obtain a maximal induced subgraph G′ of G such
that (G′, s, t) ∈ D and l(G′; s, t) = l(G; s, t) by computing a 2-connected component of a graph
(e.g., by [6]).
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Lemma 2. For a Γ-labeled graph G = (V,E) and distinct vertices s, t ∈ V , (G, s, t) ∈ D if and
only if the graph obtained from G by adding a new node r ̸∈ V and two arcs from r to s and
from r to t is 2-connected.

Proof. We may assume that s and t are in the same connected component of G (otherwise,
G contains no s–t path). Let Y ′ be the vertex set of the 2-connected component of G′ :=
(V + r, E ∪ {es = rs, et = rt}) that contains both of s and t (such a component exists because
of the assumption), and Y := Y ′ − r (note that Y ′ must contain r). We show that a vertex
v ∈ V is contained in some s–t path in G if and only if v ∈ Y .

If v ̸∈ Y , then G′ contains a 1-cut x ∈ V − v separating v from r. Hence, any r–v path in
G′ intersects x, and so do any s–v path and any t–v path in G. This implies that G contains
no s–t path intersecting v.

If v ∈ Y , then G′[Y + r] contains two r–v paths which do not share their inner vertices by
Menger’s theorem (see, e.g., [4, Chapter 3]). Each of such paths must intersect either s or t,
and hence we can construct an s–t path in G intersecting v by concatenating these two paths
and removing r from it.

2.2 Finding a non-zero path

In this section, we show that a non-zero s–t path can be found (i.e., Problem (II) can be solved)
efficiently by using well-known properties of Γ-labeled graphs. The following techniques are
often utilized in dealing with Γ-labeled graphs (see, e.g., [2, 3, 18]).

Definition 3 (Shifting). Let G = (V,E) be a Γ-labeled graph. For a vertex v ∈ V and an
element α ∈ Γ, shifting (a label function ψG) by α at v means the following operation: update
ψG to ψ′

G defined as, for each e ∈ E,

ψ′
G(e) :=


ψG(e) · α−1 (e ∈ δG(v) leaves v),
α · ψG(e) (e ∈ δG(v) enters v),
ψG(e) (otherwise).

Shifting at v ∈ V does not change the label of any walk whose end vertices are not v, and
neither that of any cycle C whose end vertex is v up to conjugate, i.e., ψ′

G(C) = α ·ψG(C) ·α−1.
Furthermore, when we apply shifting multiple times, the order of applications does not make
any effect on the resulting label function, since each arc is affected only by shifting at its head or
tail, which does not interfere with each other. We say that two Γ-labeled graphs G1 and G2 are
(s, t)-equivalent if G2 is obtained from G1 by shifting by some αv ∈ Γ at each v ∈ V \{s, t} (and
then G1 is obtained from G2 by shifting by α−1

v at each v). Note that l(G1; s, t) = l(G2; s, t) if
G1 and G2 are (s, t)-equivalent.

Lemma 4. For a connected and balanced Γ-labeled graph G = (V,E) and distinct vertices
s, t ∈ V , one can find in polynomial time a Γ-labeled graph G′ which is (s, t)-equivalent to G
such that

ψG′(e) =


α (e ∈ δG(s) leaves s),
α−1 (e ∈ δG(s) enters s),
1Γ (otherwise),

for every arc e ∈ E(G′) = E and for some α ∈ Γ (in fact, α = l(G; s, t)).

Proof. Take an arbitrary spanning tree T of G, and assume that all arcs in T are directed toward
t. Consider the following procedure. Let X := {t}. While X ̸= V , take a neighbor v ∈ NT (X),
apply shifting the current label function ψ by ψ(e) at v for a unique arc e ∈ δT (v)∩ δT (X) from
v to X (so that ψ(e) = 1Γ after the shifting), and update X := X + v. This procedure takes
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O(|E|) time, since it just performs breadth first search once and shifting |V | − 1 times (note
that the label of each arc changes at most twice).

After the procedure, we have ψ(e) = 1Γ for every arc e ∈ E(T ), and also for every arc e ∈ E
since G is balanced. Suppose that we applied shifting by α at s. Then, we obtain desired G′

by shifting ψ by α−1 at s after the procedure. Note that G′ is (s, t)-equivalent to G since the
resulting label function does not depend on the order of applications of shifting.

Lemma 5. For any (G, s, t) ∈ D, |l(G; s, t)| = 1 if and only if G is balanced.

Proof. “If” part is obvious from Lemma 4. To prove the converse direction, suppose that G
is not balanced and |V (G)| ≥ 3, and let C be an unbalanced cycle in G. Since (G, s, t) ∈ D
implies that G + st is 2-connected by Lemma 2, for any distinct x, y ∈ V (C), there exist two
disjoint paths (possibly of length 0, i.e., s = x or y = t) between {s, t} and {x, y} in G by
Menger’s theorem. Take an s–x path P and a y–t path Q in G so that V (P ) ∩ V (C) = {x},
V (Q) ∩ V (C) = {y}, and V (P ) ∩ V (Q) = ∅, and choose x as the end vertex of C. Since
ψG(C̄[x, y])

−1 · ψG(C[x, y]) = ψG(C) ̸= 1Γ, we have ψG(C[x, y]) ̸= ψG(C̄[x, y]). Hence, by
extending C[x, y] and C̄[x, y] using P and Q, we can construct two s–t paths in G whose labels
are distinct, which implies |l(G; s, t)| ≥ 2.

Lemmas 2, 4, and 5 lead to the following proposition.

Proposition 6. Let G = (V,E) be a Γ-labeled graph with a label function ψG and two specified
vertices s, t ∈ V . Then, for any α ∈ Γ, one can test whether l(G; s, t) ⊆ {α} or not in polynomial
time. Furthermore, if l(G; s, t) ̸⊆ {α}, then one can find an s–t path P with ψG(P ) ̸= α in
polynomial time.

2.3 New operations

For our characterization of triplets (G, s, t) ∈ D with |l(G; s, t)| = 2, we introduce a few new
operations which do not change l(G; s, t). Let (G = (V,E), s, t) ∈ D, and recall that G[[X]] :=
G[X ∪NG(X)]− E(NG(X)) for a vertex set X ⊆ V .

Definition 7 (2-contraction). For a vertex set X ⊆ V \ {s, t} such that NG(X) = {x, y} for
some distinct x, y ∈ V and G[[X]] is connected, the 2-contraction of X is the following operation
(see Fig. 1):

• remove all vertices in X, and

• add a new arc from x to y with label α for each α ∈ l(G[[X]];x, y) if there is no such arc.

The resulting graph is denoted by G/2X. A vertex set X ⊆ V \{s, t} is said to be 2-contractible
in G if the 2-contraction of X can be performed in G and in particular G[[X]] ̸= G.

Definition 8 (3-contraction). For a vertex set X ⊆ V \ {s, t} such that |NG(X)| = 3, G[X] is
connected, and G[[X]] is balanced, the 3-contraction of X is the following operation (see Fig. 2):

• remove all vertices in X, and

• add a new arc from x to y with label l(G[[X]];x, y) (which consists of a single element by
Lemma 5) for each pair of x, y ∈ NG(X) if there is no such arc.

The resulting graph is denoted by G/3X. A vertex set X ⊆ V \{s, t} is said to be 3-contractible
in G if the 3-contraction of X can be performed in G.

The 2-contraction and the 3-contraction are analogous to the operation which is performed
in Condition 3 in Theorem 1, and we use the same term “contraction” to refer to each of them.
Any contraction does not change l(G; s, t), since each s–t path cannot enter G[[X]] after leaving
it once (i.e., cannot traverse arcs in G[[X]] intermittently). Moreover, we also have (G′, s, t) ∈ D
for the resulting graph G′ after any contraction.
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Figure 1: 2-contraction.

Figure 2: 3-contraction.

3 Main Results

3.1 Algorithmic results

As described in Section 2.2, Problem (II) can be solved efficiently, i.e., one can find a non-zero
s–t path in polynomial time (Proposition 6). The following theorem, one of our main results,
is the first nontrivial extension of this property, which claims that not only one label but also
another can be forbidden simultaneously.

Theorem 9. Let G = (V,E) be a Γ-labeled graph with a label function ψG and two specified
vertices s, t ∈ V . Then, for any distinct α, β ∈ Γ, one can test whether l(G; s, t) ⊆ {α, β} or
not in polynomial time. Furthermore, if l(G; s, t) ̸⊆ {α, β}, then one can find an s–t path P
with ψG(P ) ̸∈ {α, β} in polynomial time.

Such an algorithm is constructed based on characterizations of Γ-labeled graphs with exactly
two possible labels of s–t paths, which are shown in Section 3.2. Our algorithm and a proof of
this theorem are presented in Section 4. It should be mentioned that this theorem leads to a
solution to Problem (I) for Γ ≃ Z3.

Corollary 10. Let G = (V,E) be a Z3-labeled graph with a label function ψG and two specified
vertices s, t ∈ V . Then one can compute l(G; s, t) in polynomial time. Furthermore, for each
α ∈ l(G; s, t), one can find an s–t path P with ψG(P ) = α in polynomial time.

3.2 Characterizations

Recall that D denotes the set of all triplets (G, s, t) such that G is a Γ-labeled graph with
s, t ∈ V (G) in which every vertex is contained in some s–t path. In this section, we provide
a complete characterization of triplets (G, s, t) ∈ D with l(G; s, t) = {α, β} for some distinct
α, β ∈ Γ. We consider two cases separately: when αβ−1 = βα−1 and when αβ−1 ̸= βα−1.

First, we give a characterization in the easier case: when αβ−1 = βα−1. Note that this case
does not appear when Γ ≃ Z3. The following proposition holds analogously to Lemmas 4 and
5 in Section 2.2, which characterize triplets (G, s, t) ∈ D with |l(G; s, t)| = 1.

Proposition 11. Let α and β be distinct elements in Γ with αβ−1 = βα−1. For any (G, s, t) ∈
D, l(G; s, t) = {α, β} if and only if G is not balanced and there exists a Γ-labeled graph G′ which
is (s, t)-equivalent to G such that

ψG′(e) =


α or β (e ∈ δG(s) leaves s),
α−1 or β−1 (e ∈ δG(s) enters s),
1Γ or αβ−1 (otherwise),

(∗)
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for every arc e ∈ E(G′) = E(G). Moreover, one can find such G′ in polynomial time if exists.

Proof. “If” part is easy to see as follows. Since G is not balanced, |l(G; s, t)| ≥ 2 by Lemma 5.
Furthermore, since αβ−1 = βα−1, the label of any s–t path in G′ is α or β. Hence, the
(s, t)-equivalence between G and G′ leads to l(G; s, t) = l(G′; s, t) = {α, β}.

The converse direction is rather difficult. Similarly to the proof of Lemma 4, take an
arbitrary spanning tree T of G and apply shifting at each v ∈ V − t so that ψ(e) = 1Γ for
every arc e ∈ E(T ), where ψ denotes the resulting label function. Since l(G; s, t) = {α, β}
and l(T ; s, t) = 1Γ, we applied shifting by α or β at s. Hence, by shifting ψ by α−1 or β−1,
respectively, at s after the above procedure, we can obtain a Γ-labeled graph G′ which is (s, t)-
equivalent to G, and this G′ is in fact desired one.

To see this, suppose to the contrary that some arc e′ ∈ E(G′) does not satisfy (∗), and
let E′ ⊊ E(G′) be the set of arcs satisfying (∗). Note that E(T ) ⊆ E′, and hence G′[E′] is
connected. Take an s–t path P in G′ with E(P ) \ E′ ̸= ∅ so that |E(P ) \ E′| is minimized.

If |E(P ) \ E′| = 1, then ψG′(P ) ̸∈ {α, β}, which contradicts l(G′; s, t) = l(G; s, t) = {α, β}.
Otherwise, we have |E(P ) \E′| ≥ 2. Let e1, e2 ∈ E(P ) \E′ be the first two such arcs traversed
in walking along P , and Q the subpath of P connecting e1 and e2 (hence, E(Q) ⊆ E′). Since
G′[E′] is connected, there exists a path R from u ∈ V (Q) to w ∈ V (P ) \ V (Q) in G′[E′].
We can construct an s–t path P ′ from P by replacing P [u,w] (or P [w, u]) with R (or R̄)
such that ∅ ̸= E(P ′) \ E′ ⊊ E(P ) \ E′ (since |E(P ′) ∩ {e1, e2}| = 1). This implies that
1 ≤ |E(P ′) \ E′| ≤ |E(P ) \E′| − 1, which contradicts the choice of R.

We next discuss the main case, which is much more difficult: when αβ−1 ̸= βα−1. The
following theorem, one of our main results, completes a characterization of triplets (G, s, t) ∈ D
with l(G; s, t) = {α, β} for some distinct α, β ∈ Γ. The definition of the set Dα,β ⊆ D, which
appears in the theorem, is shown later through Definitions 13–15 in Section 3.3. In short,
(G, s, t) ∈ Dα,β if G is constructed by “gluing” together “nice” planar Γ-labeled graphs (and
some trivial Γ-labeled graphs) and their derivations.

Theorem 12. Let α and β be distinct elements in Γ with αβ−1 ̸= βα−1. For any (G, s, t) ∈ D,
l(G; s, t) = {α, β} if and only if (G, s, t) ∈ Dα,β.

Recall that |l(G; s, t)| = 1 if and only if G is balanced by Lemma 5, which can be easily
tested by Lemma 4. Hence, these characterizations lead to the first nontrivial classification of
Γ-labeled graphs in terms of the number of possible labels of s–t paths, and the classification
is also complete when Γ ≃ Z3.

3.3 Definition of Dα,β

Fix distinct elements α, β ∈ Γ with αβ−1 ̸= βα−1. To characterize triplets (G, s, t) ∈ D with
l(G; s, t) = {α, β}, let us define several sets of triplets (G, s, t) ∈ D for which it is easy to see
that l(G; s, t) = {α, β}. Theorem 12 claims that any triplet (G, s, t) ∈ D with l(G; s, t) = {α, β}
is in fact contained in one of them.

Definition 13. For distinct α, β ∈ Γ with αβ−1 ̸= βα−1, let D0
α,β be the set of all triplets

(G, s, t) ∈ D satisfying one of the following conditions.

(A) There exists a Γ-labeled graph G′ which is not balanced and is (s, t)-equivalent to G such
that either

– the label of every arc in G′ − s is 1Γ and in δG′(s) is α or β, where all arcs in δG′(s)
are assumed to leave s (see Fig. 3), or

– the label of every arc in G′ − t is 1Γ and in δG′(t) is α or β, where all arcs in δG′(t)
are assumed to enter t (see Fig. 4).
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Figure 3: The former of Case (A). Figure 4: The latter of Case (A).

Figure 5: Case (B). Figure 6: Case (C).

(B) G is (s, t)-equivalent to the Γ-labeled graph which consists of six vertices s, v1, v2, v3, v4, t,
six arcs sv1, sv2, v1v2, v3v4, v3t, v4t with label 1Γ, and two pairs of two parallel arcs from
vi to vi+2 (i = 1, 2) whose labels are both α and β (see Fig. 5).

(C) G can be embedded on a plane with the face set F satisfying the following conditions (see
Fig. 6):

– both s and t are on the boundary of the outer face F0 ∈ F ,
– one s–t path along bd(F0) is of label α and the other is of β, and

– there exists a unique inner face F1 whose boundary is unbalanced, i.e., ψG(bd(F1)) ̸=
1Γ and ψG(bd(F )) = 1Γ for any F ∈ F \ {F0, F1}.

It is not difficult to see that l(G; s, t) = {α, β} for any triplet (G, s, t) ∈ D0
α,β.

For the following definitions, recall the operations called the “contractions,” which are de-
fined in Section 2.3 (see Definitions 7 and 8).

Definition 14. For distinct α, β ∈ Γ with αβ−1 ̸= βα−1, we define D1
α,β as the minimal set of

triplets (G, s, t) ∈ D with the following conditions:

• D0
α,β ⊆ D1

α,β, and

• if (G/3X, s, t) ∈ D1
α,β for some 3-contractible X ⊆ V \ {s, t}, then (G, s, t) ∈ D1

α,β.

We are now ready to define Dα,β.

Definition 15. For distinct α, β ∈ Γ with αβ−1 ̸= βα−1, we define Dα,β as the minimal set of
triplets (G, s, t) ∈ D with the following conditions:

• D1
α,β ⊆ Dα,β, and

• if (G/2X, s, t) ∈ Dα,β for some X ⊆ V \ {s, t} such that either G[[X]] is balanced or

(G[[X]], x, y) ∈ D1
α′,β′ , where NG(X) = {x, y} and α′, β′ ∈ Γ satisfy α′β′−1 ̸= β′α′−1, then

(G, s, t) ∈ Dα,β.

Note that the first condition can be replaced with (G0, s, t) ∈ Dα,β, where G0 consists of
two parallel arcs from s to t whose labels are α and β.

It is easy to see that l(G; s, t) = {α, β} for any triplet (G, s, t) ∈ Dα,β since any contraction
does not change l(G; s, t). A proof of the non-trivial direction (“only if” part of Theorem 12)
is presented later in Section 5.
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4 Algorithm

In this section, we give a proof of Theorem 9. That is, we present a polynomial-time algorithm
to test whether l(G; s, t) ⊆ {α, β} or not for given distinct α, β ∈ Γ and to find an s–t path of
label γ ∈ Γ \ {α, β} if l(G; s, t) ̸⊆ {α, β}, in a given Γ-labeled graph G = (V,E) with s, t ∈ V .
It should be mentioned that, when Γ ≃ Z3, such an algorithm can compute l(G; s, t) itself and
find an s–t path of label α for each α ∈ l(G; s, t). Without loss of generality, we assume that G
does not have parallel arcs with the same label.

4.1 Algorithm description

For the simple description, we separate our algorithm into two parts: to test whether |l(G; s, t)| ≤
2 or not and return at most two s–t paths which attain all labels in l(G; s, t) when |l(G; s, t)| ≤ 2,
and to find three s–t paths whose labels are distinct when it has turned out that |l(G; s, t)| ≥ 3

We first present the former algorithm. Note again that this algorithm can compute l(G; s, t)
itself when Γ ≃ Z3. Throughout this algorithm, let G′ = (V ′, E′) denote a temporary Γ-labeled
graph currently considered.

TestTwoLabels(G, s, t)

Input A Γ-labeled graph G = (V,E) and distinct vertices s, t ∈ V .

Output The set l(G; s, t) of all possible labels of s–t paths in G with those which attain the
labels if |l(G; s, t)| ≤ 2, and “|l(G; s, t)| ≥ 3” otherwise.

Step 0. Compute the set X of vertices which are not contained in any s–t path in G by
Lemma 2. If X = V , then halt with returning ∅ since there is no s–t path in G. Otherwise,
set G′ ← G−X. Note that (G′, s, t) ∈ D and l(G′; s, t) = l(G; s, t).

Step 1. Test whether G′ is balanced or not by Lemma 4 (i.e., take an arbitrary spanning tree,
and apply shifting along it). If G′ is balanced, then halt with returning the label of an
arbitrary s–t path in G with the path. Otherwise, by using an unbalanced cycle, obtain
two s–t paths in G whose labels are distinct (cf. the proof of Lemma 5), say α, β ∈ Γ. In
the following steps, we check whether l(G′; s, t) = {α, β} or not.

Step 2. If αβ−1 = βα−1, then check the condition in Proposition 11. Return {α, β} with the
two s–t paths in G obtained in Step 1 if it is satisfied, and “|l(G; s, t)| ≥ 3” otherwise.
Otherwise (i.e., if αβ−1 ̸= βα−1), to make G′ 2-connected (unless V ′ = {s, t}), add to G′

a new arc from s to t with label α (or β) if s and t are not adjacent in G′.

Step 3. While G′ is not 3-connected and |V ′| ≥ 4, do the following procedure. Let {x, y} ⊊
V ′ be a 2-cut in G′, and X the vertex set of a connected component of G′ − {x, y}
with X ∩ {s, t} = ∅ (such X exists, since s and t are adjacent in G′). Test whether
|l(G′[[X]];x, y)| ≤ 2 or not recursively by TestTwoLabels(G′[[X]], x, y). Update G′ ←
G′/2X (2-contraction) if |l(G′[[X]];x, y)| ≤ 2, and return “|l(G; s, t)| ≥ 3” otherwise.

Step 4. While there exists a 3-contractible vertex set X ⊆ V ′ \ {s, t}, update G′ ← G′/3X
(3-contraction). Note that here we use Lemma 4.

Step 5. If |V ′| ≤ 6, then compute l(G′, s, t) by enumerating all s–t paths in G′ and return the
result. Otherwise, test whether (G′, s, t) ∈ D0

α,β or not by Lemma 16. Return {α, β} with
the s–t paths in G obtained in Step 1 if (G′, s, t) ∈ D0

α,β, and “|l(G; s, t)| ≥ 3” otherwise.

Next, we show the latter algorithm, which finds three s–t paths whose labels are distinct
when it has turned out that |l(G; s, t)| ≥ 3. Also note again that this algorithm finds three s–t
paths which attain all labels when Γ ≃ Z3.
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FindThreePaths(G, s, t)

Input A Γ-labeled graph G = (V,E) and distinct vertices s, t ∈ V such that |l(G; s, t)| ≥ 3.

Output Three s–t paths in G whose labels are distinct.

Step 0. If V = {s, t}, then halt with returning three s–t paths each of which consists of a
single arc from s to t in E. Note that E must contain at least three such parallel arcs
with distinct labels.

Step 1. For each s′ ∈ NG(s)−t, test whether |l(G−s; s′, t)| ≤ 2 or not byTestTwoLabels(G−
s, s′, t).

Step 2. If |l(G− s; s′, t)| ≤ 2 for all s′ ∈ NG(s)− t, then we have already obtained s′–t paths
which attain all labels in l(G− s; s′, t). Choose three s–t paths whose labels are distinct
among the s–t paths obtained by extending such s′–t paths using an arc (possibly parallel
arcs) ss′ ∈ E for each s′ ∈ NG(s)− t and the s–t paths each of which consists of a single
arc st ∈ E, and halt with returning them.

Step 3. Otherwise, for at least one s̃ ∈ NG(s) − t, we obtained |l(G − s; s̃, t)| ≥ 3. Then,
recursively by FindThreePaths(G−s, s̃, t), find three s̃–t paths whose labels are distinct.
Extend the three s̃–t paths using an arc ss̃ ∈ E, and return the extended s–t paths.

4.2 Proof of Theorem 9

Before starting the proof, we show the detailed procedure of Step 5 in TestTwoLabels.

Lemma 16. Let (G, s, t) ∈ D. Suppose that G = (V,E) is 3-connected and contains no 3-
contractible vertex set, |V | > 6, s and t are adjacent, and {α, β} ⊆ l(G; s, t) for some distinct
α, β ∈ Γ with αβ−1 ̸= βα−1. Then, one can test whether (G, s, t) ∈ D0

α,β or not in polynomial
time.

Proof. Since |V | > 6, it is not necessary to consider Case (B) in Definition 13. Besides, Case
(A) is easily checked by testing whether G − s or G − t is balanced or not. Hence, in what
follows, we assume that (G, s, t) is not in Case (A) or (B) and focus on Case (C).

First, test the planarity of G. If G is not planar, then we can conclude (G, s, t) ̸∈ D0
α,β.

Otherwise, compute an embedding of G on a plane in which both s and t are on the outer
boundary (because of an arc st ∈ E, there exists a face on whose boundary both s and t
are). It should be noted that such a planar embedding can be computed in polynomial time
(e.g., by [7]). Since G is 3-connected, the face set is unique if there are no parallel arcs (see,
e.g., [4, Chapter 4]). Although there may be parallel arcs in G, we can say that the number of
parallel arcs is bounded as seen below.

Claim. We may assume that there is no parallel arcs between s and t.

Suppose that there exist parallel arcs from s to t, which may be assumed to have distinct
labels. Moreover, we may assume that there are exactly two such arcs eα, eβ ∈ E with labels α, β,
respectively, since otherwise, we have |l(G; s, t)| ≥ 3 and hence we can conclude (G, s, t) ̸∈ D0

α,β.
Since |V | > 6 and (G, s, t) ∈ D, there exists an s–t path in G−{eα, eβ}, and let γ be its label. If
α ̸= γ ̸= β, then |l(G; s, t)| ≥ 3. Otherwise, remove eγ from G. Note that this removal does not
violate the hypotheses of this lemma, and does not make any effect on whether (G, s, t) ∈ D0

α,β

or not.

Claim. We may assume that there exists at most one pair of parallel arcs.

Suppose that there exist parallel arcs from x to y with distinct labels, where {x, y} ̸= {s, t}.
Then, by the 3-connectivity of G, the parallel arcs form an inner face whose boundary is
unbalanced (since otherwise {x, y} is a 2-cut in G). Hence, there is a unique pair of such parallel
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arcs if (G, s, t) ∈ D0
α,β, since the existence of at least two pairs of parallel arcs immediately

implies that there exist at least two inner faces whose boundaries are unbalanced.

Recall that we have to test whether there exists an embedding of G such that the outer
boundary is unbalanced and there exists a unique inner face whose boundary is unbalanced.
Since a pair of parallel arcs is unique if exists, there are at most two possible face sets of
G. Furthermore, since there exists exactly one arc from s to t, both of the two faces whose
boundaries share the arc st ∈ E can be the outer face, i.e., there are two choices of the outer
face. It can be done in polynomial time to check, in each of the at most four (= 2 × 2) cases,
whether exactly one inner face has an unbalanced boundary or not, and hence one can do the
whole procedure in polynomial time.

We are now ready to prove Theorem 9.

Proof of Theorem 9. Recall that our goal is to test whether |l(G; s, t)| ≤ 2 or not, and to find
min{3, |l(G; s, t)|} s–t paths whose labels are distinct. These are achieved as follows. For the
input triplet (G, s, t) (which may not be in D), we first test whether |l(G; s, t)| ≤ 2 or not by
TestTwoLabels(G, s, t). If we obtain |l(G; s, t)| ≤ 2, then we also obtain at most two s–t
paths in G which attain all labels in l(G; s, t). Otherwise, we can obtain three s–t paths whose
labels are distinct by FindThreePaths(G, s, t). Hence, it suffices to show the correctness and
polynomiality of these two algorithms.

The correctness of these two algorithms is almost obvious. It should be noted that we have
l(G′; s, t) = l(G; s, t) and (G′, s, t) ∈ D at any step of TestTwoLabels(G, s, t). This follows
from the fact that the 2-contractions in Step 3 and the 3-contractions in Step 4 do not change
l(G′; s, t) or violate (G′, s, t) ∈ D.

We finally confirm the polynomiality of the two algorithms. Let Tlabels(n) and Tpaths(n)
denote the computational time of TestTwoLabels(G, s, t) and FindThreePaths(G, s, t),
respectively, where n is the number of vertices in G. It is easy to see that TestTwoLabels
runs in polynomial time, i.e., Tlabels(n) is polynomially bounded. Note that, in the recursion
step (Step 3), we just divide the graph G′ into two smaller graphs which have |V ′| − |X| and
|X| + 2 vertices, and in the 3-contraction step (Step 4), it suffices to check all 3-cuts in G′,
whose number is O(n3). For FindThreePaths, by a recurrence relation

Tpaths(n) ≤ n · Tlabels(n− 1) + Tpaths(n− 1) + poly(n),

we have Tpaths(n) ≤ n2 ·Tlabels(n)+poly(n). Hence, Tpaths(n) is also polynomially bounded.

5 Proof of Necessity Part of Theorem 12

In this section, we give a proof of the necessity part of Theorem 12, and begin with its sketch.

5.1 Proof sketch

To derive a contradiction, assume that there exist distinct α, β ∈ Γ and a triplet (G, s, t) ∈ D
such that αβ−1 ̸= βα−1, l(G; s, t) = {α, β}, and (G, s, t) ̸∈ Dα,β. We choose such α, β ∈ Γ and
(G, s, t) ∈ D so that G is as small as possible.

Fix an arbitrary arc e0 in G leaving s, and consider the graph G′ := G − e0. By using
the minimality of G, we can show that (G′, s, t) ∈ Dα,β (cf. Claims 23 and 24). We consider
the following two cases separately: when (G′, s, t) ∈ D1

α,β and when not (Sections 5.4 and 5.5,
respectively).

In both cases, we can embed a graph G̃ obtained from G′ by at most one 3-contraction on a
plane so that the conditions of Case (C) in Definition 13 are satisfied (or derive a contradiction).
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By expanding a vertex set and adding e0, we try to extend the planar embedding of G̃ to G.
Then, we have one of the following cases.

• Such an extension is possible, i.e., G can be embedded on a plane with the conditions of
Case (C) in Definition 13. This contradicts that (G, s, t) ̸∈ Dα,β .

• G contains a contractible vertex set, which contradicts thatG is a minimal counterexample
(cf. Claims 21 and 22).

• We can construct an s–t path of label γ ∈ Γ \ {α, β} in G by using e0 and some arcs in
G′, which contradicts that l(G; s, t) = {α, β}.

In each case, we have a contradiction, which completes the proof. We note that Theorem 1
plays an important role in this case analysis.

5.2 Useful lemmas

Before starting the proof, we show several lemmas which are utilized in it. Fix distinct elements
α, β ∈ Γ with αβ−1 ̸= βα−1.

Lemma 17. For any (G = (V,E), s, t) ∈ Dα,β, we have the following properties.

(1) Let G′ be the graph obtained from G by shifting by γ ∈ Γ at s. Then, (G′, s, t) ∈ Dα′,β′,
where α′ := αγ−1 and β′ := βγ−1.

(2) Let G′ := (V + s′, E + e′) be the graph obtained from G by adding a new vertex s′ and a
new arc e′ = s′s with label γ ∈ Γ. Then, (G′, s′, t) ∈ Dα′,β′, where α′ := αγ and β′ := βγ.

(3) If G = G′/2X for a Γ-labeled graph G′ and X ⊆ V (G′)\{s, t} with (G′[[X]], x, y) ∈ Dα′,β′,

where NG′(X) = {x, y} and α′, β′ ∈ Γ satisfy α′β′−1 ̸= β′α′−1, then (G′, s, t) ∈ Dα,β.

Proof. (1) We first confirm that, if (G, s, t) ∈ D0
α,β, then (G′, s, t) ∈ D0

α′,β′ . The former of Case
(A) and Case (C) are obvious (cf. Definition 13). In the latter of Case (A), apply shifting by γ
at each v ∈ V \ {s, t}, and in Case (B), do so at v1 and v2.

We next show that, if (G, s, t) ∈ D1
α,β, then (G′, s, t) ∈ D1

α′,β′ . Suppose that (G, s, t) ∈ D1
α,β.

Then, one can obtain a Γ-labeled graph G̃ such that (G̃, s, t) ∈ D0
α,β from G by applying 3-

contractions. Since any shifting does not make effect on whether a Γ-labeled graph is balanced
or not, the same 3-contractions can be applied to G′, and we obtain a Γ-labeled graph G̃′ such
that (G̃′, s, t) ∈ D0

α′,β′ as a result. Thus we have done.
By the definition of Dα,β (Definition 15), there exists a sequence G0, G1, . . . , Gr of Γ-labeled

graphs satisfying the following conditions:

• Gr = G,

• G0 consists of two vertices s and t and two parallel arcs eα, eβ from s to t whose labels
are α and β, respectively, and

• Gi−1 = Gi/2Xi for some Xi ⊆ V (Gi) \ {s, t} such that either Gi[[Xi]] is balanced or
(Gi[[Xi]], xi, yi) ∈ D1

αi,βi
, where NGi(Xi) = {xi, yi} and αi, βi ∈ Γ satisfy αiβ

−1
i ̸= βiα

−1
i ,

for each i = 1, 2, . . . , r.

We prove that the same 2-contractions can be applied to G′.
Define G′

r := G′. Then, we can inductively construct a Γ-labeled graph G′
i−1 := G′

i/2Xi,
which coincides with the one obtained from Gi−1 by shifting by γ at s. This means that we
finally obtain a Γ-labeled graph G′

0 from G′ by the 2-contractions of Xi (i = r, r − 1, . . . , 1),
which satisfies (G′

0, s, t) ∈ D0
α′,β′ (in Cases (A) and (C)). Thus we have (G′, s, t) ∈ Dα′,β′ , since

either G′
i[[Xi]] is balanced or (G′

i[[Xi]], xi, yi) ∈ D1
α′
i,β

′
i
, where α′

i = αi and β
′
i = βi if s ̸∈ {xi, yi},
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and α′
i = αiγ

−1 and β′i = βiγ
−1 otherwise (assume xi = s without loss of generality by the

symmetry of xi and yi).

(2) Similarly to the proof of (1), there exists a sequence G0, G1, . . . , Gr = G such that G0 =
({s, t}, {eα, eβ}), and Gi−1 is obtained from Gi by some appropriate 2-contraction. The same 2-
contractions can be applied toG′, and we obtain the Γ-labeled graphG′

0 = ({s′, s, t}, {e′, eα, eβ}),
which satisfies (G′

0, s
′, t) ∈ D0

α′,β′ (in Cases (A) and (C)). Thus we have (G′, s, t) ∈ Dα′,β′ .

(3) Similarly, there exists a sequence H0,H1, . . . , Hr = G′[[X]] such that H0 consists of two
parallel arcs from x to y whose labels are α′ and β′, and Hi−1 is obtained from Hi by some
appropriate 2-contraction. The same 2-contractions can be applied to G′, and we obtain G.
This implies that (G′, s, t) ∈ Dα,β.

By Lemma 17-(1), it suffices to consider the case when β = 1Γ and α−1 ̸= α (i.e., α2 ̸= 1Γ).
The following lemma gives a useful characterization of D0

1Γ, α
in Case (C) (cf. Definition 13).

Lemma 18. Suppose that α−1 ̸= α ∈ Γ (i.e., α2 ̸= 1Γ). For any triplet (G = (V,E), s, t) ∈
D0

1Γ, α
in Case (C) in Definition 13, there exists a Γ-labeled graph G′ which is (s, t)-equivalent

to G and embeddable with the following conditions (see Fig. 7).

1. The arc set E is partitioned into E0 and E1 (i.e., E0 ∪E1 = E and E0 ∩E1 = ∅), where
Ei := { e ∈ E | ψG′(e) = αi } (i = 0, 1).

2. There exists an s–t path P = (s = u0, e1, u1, . . . , el, ul = t) along the outer boundary of
G′ − E1 such that

– every arc in E1 is embedded on the outer face of G′ − E1 and is from ui ∈ V (P ) to
uj ∈ V (P ) for some i < j, and

– for any distinct arcs e1 = ui1uj1 , e2 = ui2uj2 ∈ E1, one of two paths P [ui1 , uj1 ] and
P [ui2 , uj2 ] is a subpath of the other.

Figure 7: An s–t equivalent embedding of (G, s, t) ∈ D0
1Γ, α

in Case (C).

Proof. Fix an embedding of G with the conditions of Case (C), and let P0 and P1 be the s–t
paths along the boundary of the outer face F0 of G whose labels are 1Γ and α, respectively.

Let G∗ be the dual graph of G (as an undirected graph), i.e., the vertex set of G∗ is the
face set F of G, the edge set of G∗ coincides with the arc set of G, and each two faces whose
boundaries share an arc e ∈ E in G are connected by the same-named edge e in G∗. Take
a shortest F1–F0 path Q in G∗ − E(P0). We prove that the second condition holds with
E1 = E(Q).

Note that G′′ := G−E(Q) is connected since Q is a shortest path without the corresponding
edge to any arc in E(P0), and that G′′ is balanced since F1 is the unique unbalanced inner face.
We then have l(G′′; s, t) = 1Γ by Lemma 5. Hence, by Lemma 4, we may assume that ψG(e) = 1Γ
for every arc e ∈ E(G′′) by shifting at some vertices v ∈ V \ {s, t}. Thus we obtain G′ with the
second condition, since ψG(bd(F )) = 1Γ for any F ∈ F \ {F0, F1}.

The following two lemmas are utilized to derive a contradiction by constructing an s–t path
of label γ ̸∈ Γ \ {α, β} in G, where (G, s, t) ∈ D.
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Lemma 19. For a triplet (G, s, t) ∈ D, if G contains an unbalanced cycle C with ψG(C̄) =
ψG(C), then there exist distinct elements α′, β′ ∈ l(G; s, t) with α′β′−1 = β′α′−1.

Proof. We first note that the equality ψG(C̄) = ψG(C) does not depend on the choices of the
direction and the end vertex of the cycle C. Suppose that G contains such an unbalanced cycle
C. By Menger’s theorem (cf. the proof of Lemma 5), for some distinct vertices x, y ∈ V (C),
take an s–x path P and a y–t path Q in G so that V (P ) ∩ V (C) = {x}, V (Q) ∩ V (C) = {y},
and V (P ) ∩ V (Q) = ∅, and choose y as the end vertex of C.

Let α′′ := ψG(C[x, y]) and β
′′ := ψG(C̄[x, y]), which are distinct since C is unbalanced. We

then have α′′β′′−1 = ψG(C) = ψG(C̄) = β′′α′′−1. By extending C[x, y] and C̄[x, y] using P
and Q, we obtain two s–t paths in G whose labels are α′ := ψG(Q) · α′′ · ψG(P ) and β′ :=
ψG(Q) · β′′ · ψG(P ), which are distinct. Since α′′β′′−1 = β′′α′′−1, we have α′β′−1 = β′α′−1.

In particular, G contains no unbalanced cycle C with ψG(C̄) = ψG(C) if l(G; s, t) = {α, β}
(recall that αβ−1 ̸= βα−1) and (G, s, t) ∈ D.

Lemma 20. For a triplet (G, s, t) ∈ D, if there exist two paths Pi (i = 1, 2) in G with the
following conditions (see Fig. 8), then |l(G; s, t)| ≥ 3:

• Pi is from s to xi ∈ V \ {s, t} for i = 1, 2,

• ψG(P1) ̸= ψG(P2), and

• {α′, β′} ⊆ l(G− (V (Pi)− xi);xi, t) for i = 1, 2, for some α′, β′ ∈ Γ with α′β′−1 ̸= β′α′−1.

Figure 8: Combination of two labels leads to at least three labels.

Proof. For each i = 1, 2, by concatenating Pi and each of two xi–t paths in G − (V (Pi) − xi)
whose labels are α′ and β′, we construct four s–t paths whose labels are γ1 := α′ · ψG(P1),
γ2 := β′ · ψG(P1), γ3 := α′ · ψG(P2), and γ4 := β′ · ψG(P2).

Suppose to the contrary that |l(G; s, t)| ≤ 2. Since γ1 ̸= γ2 ̸= γ4 ̸= γ3 ̸= γ1, we must have
γ1 = γ4 and γ2 = γ3. Hence, ψG(P1) = α′−1 ·β′ ·ψG(P2) and ψG(P1) = β′−1 ·α′ ·ψG(P2), which
implies α′−1β′ = β′−1α′. This is equivalent to α′β′−1 = β′α′−1, a contradiction.

5.3 Minimal counterexample

Here, we start a proof of “only if” part of Theorem 12. To derive a contradiction, suppose
to the contrary that there exist distinct elements α, β ∈ Γ and a triplet (G, s, t) ∈ D such
that αβ−1 ̸= βα−1, l(G; s, t) = {α, β}, and (G, s, t) ̸∈ Dα,β. We choose such α, β ∈ Γ and
(G = (V,E), s, t) ∈ D so that the value of |V | + |E| is minimized. Note that we have |V | ≥ 3
obviously, and we may assume β = 1Γ and α−1 ̸= α (i.e., α2 ̸= 1Γ) by Lemma 17-(1). By the
minimality, G contains no contractible vertex set as follows.

Claim 21. There is no 2-contractible vertex set in G.
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Proof. Suppose to the contrary that G contains a 2-contractible vertex set X ⊆ V \ {s, t}
with NG(X) = {x, y}. Since (G, s, t) ∈ D, we also have (G[[X]], x, y) ∈ D, where recall that
G[[X]] := G[X ∪NG(X)]− E(NG(X)). If |l(G[[X]];x, y)| ≥ 3, then we also have |l(G; s, t)| ≥ 3
(since G contains two disjoint paths between {s, t} and {x, y} by Lemma 2 and Menger’s
Theorem), a contradiction. In the case that l(G[[X]];x, y) = {α′, β′} for distinct α′, β′ ∈ Γ with
α′β′−1 = β′α′−1, there exists an unbalanced cycle C in G[[X]] (which is a subgraph of G) such
that ψG(C̄) = ψG(C) by Proposition 11 (since G[[X]] is not balanced, and the label of any
unbalanced cycle in G[[X]] is self-inversed by (∗)), which contradicts Lemma 19.

Otherwise, i.e., if |l(G[[X]];x, y)| = 1 or l(G[[X]];x, y) = {α′, β′} for some α′, β′ ∈ Γ with
α′β′−1 ̸= β′α′−1, we can construct a smaller counterexample by the 2-contraction of X (by
Definition 15 and Lemma 17-(3)), a contradiction. It should be noted that (G[[X]], x, y) ∈ Dα′,β′

if l(G[[X]];x, y) = {α′, β′}, since G is a minimal counterexample and G[[X]] is a proper subgraph
of G by the definition of the term “2-contractible” (see Definition 7).

Claim 22. There is no 3-contractible vertex set in G.

Proof. Suppose to the contrary that G contains a 3-contractible vertex set X ⊆ V \ {s, t}.
The minimality of G implies (G/3X, s, t) ∈ Dα,β, which means that there exists a sequence
G0, G1, . . . , Gr = G/3X such that G0 = ({s, t}, {eα, eβ}), and Gi−1 is obtained from Gi by
some appropriate 2-contraction (cf. the proof of Lemma 17). We show that almost the same
2-contractions can be applied to G, which implies (G, s, t) ∈ Dα,β, a contradiction.

Let j be the maximum index such that NG(X) ∩ (V (Gj) \ V (Gj−1)) ̸= ∅. We then have
1 ≤ j ≤ r since |V (G0)| = 2 and |NG(X)| = 3, and we can apply to G the same 2-contractions
as that to construct Gj from Gr = G/3X. Let Hj be the resulting graph, Y := V (Gj)\V (Gj−1)
(i.e., Gj−1 = Gj /2Y ), and Z := X ∪ Y ⊆ V (Hj). Then, NHj (X) ⊆ Y ∪NGj (Y ) since x and y
are adjacent in Gj for any distinct x, y ∈ NHj (X). Hence, X is 3-contractible also in Hj [[Z]],
and we have Gj [[Y ]] = Hj [[Z]]/3X − E(NGj (Y )). This implies that the 2-contraction of Z in
Hj does not violate the condition of Dα,β (see Definition 15) since neither does that of Y in Gj ,
and Hj /2Z = Gj /2Y . Thus we have (G, s, t) ∈ Dα,β, a contradiction.

Fix an arbitrary arc e0 = sv0 ∈ δG(s) leaving s, and let G′ := G− e0. Note that G contains
no arc between s and t by Claim 21, and hence v0 ̸= t. We next show the following claims,
which lead to (G′, s, t) ∈ Dα,β.

Claim 23. (G′, s, t) ∈ D.

Proof. By Lemma 2, it suffices to show that G′ + r + rs + rt is 2-connected. Suppose to the
contrary that it is not 2-connected, i.e., there exists a 1-cut w ∈ V separating some vertex
from both s and t (note that possibly w ∈ {s, t}). If w = s, then G − s is not connected,
which contradicts (G, s, t) ∈ D. Otherwise, {s, w} is a 2-cut in G, and hence G contains a
2-contractible vertex set X ⊆ V \ {s, t} with NG(X) = {s, w}, which contradicts Claim 21.

Claim 24. l(G′; s, t) = {α, β}.

Proof. Since each s–t path in G′ is also in G, l(G′; s, t) ⊆ l(G; s, t) = {α, β}. Suppose to the
contrary that |l(G′; s, t)| = 1. Then, G′ is balanced by Lemma 5 and Claim 23, and hence G−s
is also balanced. This implies that (G, s, t) ∈ D0

α,β ⊆ Dα,β (in Case (A) in Definition 13), a
contradiction.

By Claims 23 and 24 and the minimality of G, we have (G′, s, t) ∈ Dα,β. We consider the
following two cases separately: when (G′, s, t) ∈ D1

α,β and when not.
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5.4 When (G′, s, t) ∈ D1
α,β (Case 1).

By Claim 22, if G′ contains a 3-contractible vertex set X ⊆ V \ {s, t}, then X must contain
the head v0 of e0. Hence, if we choose a maximal 3-contractible vertex set X, then we have
(G′/3X, s, t) ∈ D0

α,β . Let us define G̃ := G′/3X in this case, and G̃ := G′ otherwise (i.e., if G′

contains no 3-contractible vertex set). Note that (G̃, s, t) ∈ D0
α,β. We discuss the three cases in

Definition 13 separately. Recall that we may assume that β = 1Γ and α−1 ̸= α (i.e., α2 ̸= 1Γ).

Case 1.1. When (G̃, s, t) is in Case (A).

Note that any 3-contraction does not make an effect on this situation (i.e., either all un-
balanced cycles in G′ intersect s, or they do t) since it just replaces a balanced subgraph with
a balanced triangle, and hence we may assume that G̃ = G′ and G′ satisfies the condition of
Case (A) (by shifting at some vertices in V \ {s, t} in advance of removing e0 if necessary).
Since G contains no 2-contractible vertex set, G− {s, t} is connected, which implies that there
exists a v0–w path in G− {s, t} for each neighbor w ∈ NG(t) (recall that v0 ̸= t). Therefore, if
e0 = sv0 ∈ δG(s) violates the condition of Case (A) (i.e., ψG(e0) ̸∈ {1Γ, α} in the former case,
and ψG(e0) ̸= 1Γ in the latter case), then it is easy to see that |l(G; s, t)| ≥ 3 (see Figs. 9 and
10). Note that we use Lemma 20 in the latter case (let P1 := (s) and P2 := (s, e0, v0)).

Figure 9: The former of Case (A). Figure 10: The latter of Case (A).

Case 1.2. When (G̃, s, t) is in Case (B).

If G̃ = G′, then it is easy to see |l(G; s, t)| ≥ 3 by Lemma 20, since G contains no parallel
arc with the same label (see Fig. 11). Otherwise, G̃ = G′/3X for some X ⊆ V \ {s, t}. If
NG′(X) = {s, v1, v2}, then G[[X]] is not balanced by Claim 22, and hence |l(G; s, t)| ≥ 3 by
Lemma 20 (e.g., we can take two s–v1 paths P1 and P2 in G[[X]] with ψG(P1) ̸= ψG(P2)).

Suppose that NG′(X) = {v3, v4, t} (see Fig. 12). If there exist two disjoint paths between
{v0, t} and {v3, v4} in G[[X]], then |l(G; s, t)| ≥ 3 by Lemma 20 (e.g., we can take two s–v1 paths
P1 and P2 in G[[X+v3]] with ψG(P1) ̸= ψG(P2) and l(G− (V (Pi)−v1); v1, t) = {1, α} (i = 1, 2),
if G[[X]] contains disjoint v0–v3 path and t–v4 path). Otherwise, by Menger’s theorem, G[[X]]
contains a 1-cut w ∈ X separating {v0, t} from {v3, v4} (possibly w = v0). In this case, {s, w}
is a 2-cut in G, which contradicts Claim 21.

Figure 11: Case (B) (G̃ = G′). Figure 12: Case (B) (G̃ = G′/3X).
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Case 1.3. When (G̃, s, t) is in Case (C).

Suppose that G̃ = (Ṽ , Ẽ) is embedded with the conditions in Lemma 18 (we apply shifting
at each vertex v ∈ V \ {s, t} to G in advance of the construction of G̃ if necessary). Let Ẽi ⊆ Ẽ
be the arc set corresponding to Ei ⊆ E in Lemma 18 for each i = 0, 1, and we refer to the path
P = (s = u0, e1, u1, . . . , el, ul = t) along the outer boundary of G̃− Ẽ1 as P itself.

In what follows, we derive a contradiction by showing that (G, s, t) ∈ D1Γ, α, γ ∈ l(G; s, t)
for some γ ∈ Γ \ {1Γ, α} (in particular, γ = α2 or α−1), or G contains a contractible vertex set
(which contradicts Claims 21 or 22). Note that (G̃, s, t) ∈ D follows from (G′, s, t) ∈ D, and
hence G̃− s is connected. Since every arc in Ẽ1 connects two vertices on the path P in G̃− Ẽ1,
G̃ − Ẽ1 − s is also connected. Hence, we have ψG(e0) ∈ l(G; s, t) = {1Γ, α}, and consider the
following two cases separately: when ψG(e0) = 1Γ, and when ψG(e0) = α.

Note that we have Ẽ1 \ δG̃(s) ̸= ∅. To see this, suppose that Ẽ1 \ δG̃(s) = ∅. In this case,

G − s as well as G̃ − s is balanced, which implies that (G, s, t) ∈ D0
α,β ⊆ Dα,β in Case (A) in

Definition 13. We can also see Ẽ1 \ δG̃(t) ̸= ∅ in the same way.

We first discuss the case when G̃ = G′, and later explain that the case when G̃ = G′/3X
for some X ⊆ V \ {s, t} can be dealt with in almost the same way with the aid of Theorem 1.
Assume G̃ = G′ = G−e0, and let F̃0 and F̃ ′

0 denote the outer faces of G̃ and G̃−s, respectively.

Case 1.3.1. When ψG(e0) = 1Γ.

Let us begin with an easy case: when v0 ∈ V (bd(F̃ ′
0)).

Case 1.3.1.1. Suppose that v0 ∈ V (bd(F̃ ′
0)) \ V (P ). In this case, we can embed G = G̃ + e0

on a plane by adding e0 = sv0 on F̃0 so that (G, s, t) satisfies the conditions of Case (C),
a contradiction.

Case 1.3.1.2 (Fig. 13). Otherwise, v0 = uh ∈ V (bd(F̃ ′
0))∩V (P ). Take an s–t path P ′ so that

(P ′ ∪ P )− s forms the outer boundary of G̃− Ẽ1 − s. Let j be the minimum index such
that E(P [uj , t]) ⊆ E(P ′), and i the index such that P [ui, uj ] ∪ P ′[ui, uj ] forms a cycle
(i.e., they intersect only at ui and uj).

Take an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) so that j′− i′ is maximized. If j′ ≤ i, then G contains
a 2-cut {s, ui} separating ui−1 ̸= s from t ̸= ui, which contradicts Claim 21. Hence, we
have i < j′.

If v0 = uh ∈ V (P )∩V (P ′) or h ≤ i′ ((a) in Fig. 13), then we can embed e0 = sv0 without
violating the conditions of Case (C). Otherwise, we have j′ ≤ h < j ((b) in Fig. 13)
since uh = v0 ∈ V (bd(F̃ ′

0)) ∩ V (P ). In this case, we can construct an s–t path of label
α−1 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g., by concatenating e0, P̄ [uh, uj′ ], ē

′, P [ui′ , ui],
P ′[ui, uj ], and P [uj , t] if 0 < i′ ≤ i.

Figure 13: Case 1.3.1.2.

Otherwise, v0 ̸∈ V (bd(F̃ ′
0)). Take a path Q in G̃ − Ẽ1 − E(P ) − s from ui ∈ V (P ) to

uj ∈ V (P ) with 0 < i < j so that Q ∪ P [ui, uj ] forms a cycle that encloses v0 (possibly
v0 ∈ V (P )), i.e., V (Q ∪ P [ui, uj ]) separates v0 from both of s and t in G̃ (or v0 = uh ∈ V (P )
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with i < h < j). If there are multiple choices of Q, then choose Q so that the region enclosed
by Q ∪ P [ui, uj ] is maximized.

If V (Q) separates v0 from V (P ) in G̃, then G contains a 3-contractible vertex set X ⊆
V \ V (P ) such that v0 ∈ X and NG(X) = {s, w1, w2}, which contradicts Claim 22, where
w1, w2 ∈ V (Q) are the vertices closest ui, uj ∈ V (P ) ∩ V (Q), respectively, among those which
are reachable from v0 in G̃ without intersecting Q in between. Thus we can take a v0–uh path
R in G̃− V (Q) (possibly of length 0, i.e., v0 = uh) with i < h < j. If there are multiple choices
of R, then choose R so that h is maximized under the condition that V (R) ∩ V (P ) = {uh}.

Case 1.3.1.3 (Fig. 14). Suppose that there is no arc in Ẽ1 \ δG̃(s) incident to an inner vertex

on P [ui, uj ]. If every arc in Ẽ1∩δG̃(s) enters a vertex on P [s, ui]∪P [uj , t], then G contains
a 3-contractible vertex set X ⊆ V \ {s, ui, uj} such that v0 ∈ X and NG(X) = {s, ui, uj},
a contradiction. Otherwise, every arc in Ẽ1 \ δG̃(s) ̸= ∅ enters a vertex on P [s, ui]. Then,

G contains a 2-cut {s, ui} separating ui−1 from t (note that Ẽ1 \ δG̃(s) ̸= ∅ implies that
i > 1), which contradicts Claim 21.

Case 1.3.1.4 (Fig. 15). Suppose that there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) such that
i′ < h and i < j′ < j. In this case, we can construct an s–t path of label α−1 ∈ Γ\{1Γ, α}
in G, a contradiction, e.g., by concatenating e0, R, P [uh, uj′ ], ē

′, P̄ [ui′ , ui], Q, and P [uj , t]
if i ≤ i′ and h ≤ j′.

Case 1.3.1.5 (Fig. 16). Suppose that every arc in Ẽ1 \ δG̃(s) connects two vertices on P [uh, t].

In this case, every arc in Ẽ1 ∩ δG̃(s) also enters a vertex on P [uh, t], and v0 ̸= uh since

v0 ̸∈ V (bd(F̃ ′
0)). Let w be the vertex closest to uj among those on Q which are reachable

from v0 in G− uh without intersecting Q in between. By the maximality of j and h (i.e.,
the choice of Q and R), {s, uh, w} separates v0 ∈ V \ {s, uh, w} from V (P [uh, t]) in G,
and hence G contains a 3-contractible vertex set X ⊆ V \{s, uh, w} such that v0 ∈ X and
NG(X) = {s, uh, w}, a contradiction.

Figure 14: Case 1.3.1.3.

Figure 15: Case 1.3.1.4. Figure 16: Case 1.3.1.5.

These three cases imply that there exists an arc in Ẽ1 \ δG̃(s) entering a vertex on P [uj , t].
To see this, suppose to the contrary that every such arc enters a vertex on P [u1, uj−1], and take
e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) so that j′ − i′ is maximized. We may assume i < j′ by Case 1.3.1.3,
and hence h ≤ i′ by Case 1.3.1.4, which leads to the condition of Case 1.3.1.5, a contradiction.
This implies also that no arc in Ẽ1 ∩ δG̃(s) enters a vertex on P [u1, uj−1].
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Case 1.3.1.6 (Fig. 17). Suppose that all arcs in Ẽ1 \ δG̃(s) leave the same vertex ui∗ ∈ V (P )

with i∗ < h. In this case, by Case 1.3.1.4, we may assume that every arc in Ẽ1 \ δG̃(s)
enters a vertex on P [uj , t]. Then, since {s, ui∗ , uj} separates v0 ∈ V \ {s, ui∗ , uj} from
V (P [uj , t]) in G, there exists a 3-contractible vertex set X ⊆ V \ {s, ui∗ , uj} in G such
that v0 ∈ X and NG(X) = {s, ui∗ , uj}, a contradiction.

Case 1.3.1.7 (Fig. 18). Suppose that all arcs in Ẽ1 \ δG̃(s) enter the same vertex uj∗ ∈ V (P )
with j ≤ j∗. In this case, {s, uj , uj∗} separates v0 ∈ V \ {s, uj , uj∗} from V (P [uj , t]) in G,
and hence G contains a contractible vertex set X ⊆ V \ {s, uj , uj∗} such that v0 ∈ X and
NG(X) = {s, uj , uj∗}, a contradiction. Note that uj∗ ̸= t by Ẽ1 \ δG̃(t) ̸= ∅.

Figure 17: Case 1.3.1.6. Figure 18: Case 1.3.1.7.

Otherwise, there exist two arcs e1 = ui1uj1 and e2 = ui2uj2 in Ẽ1 \δG̃(s) such that i2 < i1 <
j1 < j2 by Cases 1.3.1.6 and 1.3.1.7. We choose e2 so that j2 − i2 is maximized. We then have
i2 < h by Case 1.3.1.5, and j ≤ j2 by the argument just after Case 1.3.1.5. Since there exists
an arc in Ẽ1 \ δG̃(s) incident to an inner vertex on P [ui, uj ] by Case 1.3.1.3, we can choose e1
so that i < i1 (which is obvious if i ≤ i2, and follows from Case 1.3.1.4 otherwise). We then
have h < j1, since otherwise we have i < i1 < j1 ≤ h < j, which implies that e1 satisfies the
condition of Case 1.3.1.4. We choose e1 so that i1 is minimized under the condition that i < i1.

Case 1.3.1.8 (Fig. 19). Suppose that j ≤ i1. In this case, {s, ui2 , uj} separates v0 ∈ V \
{s, ui2 , uj} from P [uj , t] in G, and hence G contains a 3-contractible vertex set X ⊆
V \ {s, ui2 , uj} such that v0 ∈ X and NG(X) = {s, ui2 , uj}, a contradiction.

Case 1.3.1.9 (Figs. 21 and 22). Suppose that j2 = j. We then have h ≤ i1 by i < i1 < j1 <
j2 = j and Case 1.3.1.4. Let h∗ be the maximum index such that there exists a w–uh∗

path R∗ in G̃− uj for some w ∈ (V (Q) \ V (P )) + v0 such that V (R∗) ∩ V (Q) ⊆ {w} and
V (R∗) ∩ V (P ) = {uh∗}. Note that h ≤ h∗. If i1 < h∗, then we have h < h∗ because of
h ≤ i1. In this case (see Fig. 21), since R and R∗ are disjoint by the maximality of h and
h∗, we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G, a contradiction, e.g., by
concatenating e0, R, P [uh, ui1 ], e1, P̄ [uj1 , uh∗ ], R̄∗, Q̄[w, ui], P̄ [ui, ui2 ], e2, and P [uj , t] if
h∗ ≤ j1 and i2 ≤ i. Otherwise (i.e., if h∗ ≤ i1), by the minimality of i1 and the maximality
of h∗, there exists a 2-cut {uh∗ , uj} separating uj1 from ui (i < h ≤ h∗ ≤ i1 < j1 < j2 = j)
in G (see Fig. 22), a contradiction.

Case 1.3.1.10 (Fig. 20). Otherwise, we have i < i1 < j < j2 (also recall that i2 < i1 < j1 < j2
and i2 < h < j1). In this case, we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α}
in G, a contradiction, e.g., by concatenating e0, R, P̄ [uh, ui1 ], e1, P̄ [uj1 , uj ], Q̄, P [ui, ui2 ],
e2, and P [uj2 , t] if i1 ≤ h, j ≤ j1, and i ≤ i2.

Case 1.3.2. When ψG(e0) = α.

This case is rather easier than Case 1.3.1. Note that, if there exists a v0–t path of label
α in G̃ = G′ = G − e0, then we can construct an s–t path of label α2 ∈ Γ \ {1Γ, α} in G,
a contradiction, by extending the v0–t path using e0 = sv0. Hence, we may assume that G̃
contains no such path.
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Figure 19: Case 1.3.1.8. Figure 20: Case 1.3.1.10.

Figure 21: Case 1.3.1.9 (label α2). Figure 22: Case 1.3.1.9 (a 2-cut {uh∗ , uj}).

Case 1.3.2.1. Suppose that v0 = uh ∈ V (P ). If there exists an arc e′ = ui′uj′ ∈ Ẽ1\δG̃(s) with
h < j′, then we can construct a v0–t path of label α, a contradiction, e.g., by concatenating
P [uh, ui′ ], e

′, and P [uj′ , t] if h ≤ i′. Otherwise, every arc in Ẽ1 \ δG̃(s) ̸= ∅ connects two
vertices on P [u1, uh]. Hence, we can embed e0 = suh without violating the conditions of
Case (C) in Definition 13 (cf. Lemma 18).

Case 1.3.2.2 (Fig. 23). Otherwise, v0 ̸∈ V (P ). Let i and j be the minimum and maximum
indices, respectively, such that there exist a v0–ui path Q and a v0–uj path R in G̃−Ẽ1−s
that do not intersect P in between. If there exists an arc e′ = ui′uj′ ∈ Ẽ1 \ δG̃(s) with
i < j′, then we can construct a v0–t path of label α, a contradiction, e.g., by concatenating
Q, P̄ [ui, ui′ ], e

′, and P [uj′ , t] if i
′ ≤ i.

Otherwise, every arc in Ẽ1\δG̃(s) ̸= ∅ connects two vertices on P [u1, ui]. Since G contains
no 3-contractible vertex set (by Claim 22), there exists an arc from s to the connected
component of G̃ − {s, ui, uj} that contains v0 with label 1Γ in G̃. Hence, because of the
minimality of i and the planarity of G̃, there is no path from an inner vertex on P [s, ui]
to a vertex on P [uj , t] in G̃− Ẽ1 − s which does not intersect P in between. This implies
that G contains a 2-cut {s, ui} separating u1 ̸= ui from t, a contradiction.

Figure 23: Case 1.3.2.2.

Case 1.3.3. When G̃ = G′/3X for some X ⊆ V \ {s, t}.

Recall that X must contain v0 by Claim 22. Suppose that NG′(X) = {y1, y2, y3}. Since
G̃ is embedded as Lemma 18, the resulting triangle y1y2y3 of the 3-contraction of X (which
is a balanced cycle by the definition) consists of either three arcs in Ẽ0 or one arc in Ẽ0 and
two arcs in Ẽ1. Without loss of generality (by the symmetry of y1, y2, y3), assume that the arc
between y2 and y3 is in Ẽ0, i.e., l(G′[[X]]; y2, y3) = 1Γ. Then, by shifting at vertices in X in
advance of removing e0 = sv0 from G if necessary, we may assume that the label of every arc
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in G′[[X]] − y1 is 1Γ and in δ
G′[[X]](y1) is γ, where γ is a fixed element in {1Γ, α, α−1} and all

arcs in δ
G′[[X]](y1) are assumed to enter y1 (recall that G′[[X]] is balanced by Definition 8).

Let G̃′ be the Γ-labeled graph obtained from G′ by the following procedure:

• merge all vertices in X into v0,

• identify parallel arcs with the same label as a single arc, and

• for each {i, j, k} = {1, 2, 3}, add an arc from yj to yk with label l(G′[[X]]; yj , yk) if there
is no such arc and there are disjoint v0–yi path and yj–yk path in G′[[X]] (note that
otherwise, by Theorem 1, G′[[X]] can be embedded on a plane so that v0, yj , yi, yk are on
the outer boundary in this order).

Figure 24: Corresponding parts of G̃ and G̃′.

Since G̃ is embedded as Lemma 18, we can naturally embed G̃′ so (see Fig. 24). By the
same argument for G̃′ as Cases 1.3.1 and 1.3.2, we can derive a contradiction in this case. Note
that, if we can construct an s–t path of label γ ∈ Γ\{1Γ, α} in G̃′+e0, then it can be expanded
to one in G = G′+ e0 (which may use disjoint v0–yi path and yj–yk path in G′[[X]]). Besides, if
we can embed G̃′ + e0 as Lemma 18, then the embedding can be expanded to one of G without
violating the conditions, since any embedding of G̃′ with v0 exposed on the outer boundary can
be expanded to one of G′ so by Theorem 1. Note that, for any k-cut (k ∈ {2, 3}) separating
some vertex set from {v0, y1, y2, y3} in G′[[X]], we can perform the k-contraction, respectively,
which emulates the operation in Condition 3 in Theorem 1, since G′[[X]] is balanced.

5.5 When (G′, s, t) ∈ Dα,β \ D1
α,β (Case 2).

In this case, G′ contains a 2-contractible vertex set X ⊆ V \ {s, t} by the definition of Dα,β (see
Definition 15). Due to the previous section, we may assume that this situation occurs regardless
of the choice of the arc e0 = sv0 ∈ δG(s), which has at least two possibilities by Lemma 17-(2).
We first show a useful claim about such a vertex set (in fact, slightly more general).

Claim 25. Let X ⊆ V \{s, t} be a vertex set with NG(X) = {s, x, y} for some distinct x, y ∈ V
(see Fig. 25). Then, s ̸∈ {x, y}, G[[X]] is not balanced, and (G[[X]]− x, s, y) ∈ D. Moreover, if
|l(G[[X]]; s, y)| = 1, then X = {v} for some v ∈ V \ {s, x, y} and G[[X]] consists of a single arc
between s and v, one between v and y, and two parallel arcs between v and x (see Fig. 26).

Figure 25: The situation of Claim 25. Figure 26: When |l(G[[X]]; s, y)| = 1.
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Figure 27: Case 2.1.1. Figure 28: Case 2.1.1.1.

Proof. If s ∈ {x, y}, then X is 2-contractible in G, which contradicts Claim 21. Besides, if
G[[X]] is balanced, then X is 3-contractible in G, which contradicts Claim 22.

Suppose to the contrary that (G[[X]]− x, s, y) ̸∈ D. Then, G[[X]]− x+ sy contains a 1-cut
w ∈ X ∪{s, y} by Lemma 2. The vertex set of the connected component of G[[X]]−{w, x}+ sy
that contains none of s and y is separated from both of s and t by {w, x} in G (possibly
t ∈ {w, x}), and hence it is 2-contractible, a contradiction.

Moreover, suppose that |l(G[[X]]; s, y)| = 1, which leads to (G[[X]], s, y) ̸∈ D by Lemma 5.
Then, G[[X]] − x is balanced since (G[[X]] − x, s, y) ∈ D, which also implies that G[[X]] + sy
contains a unique 1-cut w ∈ X. The 1-cut w separates x from the balanced componentG[[X]]−x,
and hence there are two parallel arcs between w and x (which form an unbalanced cycle).
Besides, if X − w ̸= ∅, then G contains a contractible vertex set Y ⊆ X − w with NG(Y ) ⊆
{s, w, y}, a contradiction. Thus we have done.

Choose a minimal 2-contractible vertex set X in G′, and let NG′(X) = {x, y}. We then
have v0 ∈ X and s ̸∈ {x, y} by Claim 21 (G = G′ + e0 contains no 2-contractible vertex set),
and (G′[[X]], x, y) ∈ D1

α′,β′ for some distinct α′, β′ ∈ Γ with α′β′−1 ̸= β′α′−1 by Lemma 19 and
Claims 23–25. Besides, G[X] must be connected, since otherwise some connected component
of G[X] does not contain v0 and hence its vertex set is contractible in G, which contradicts
Claim 21 or 22.

Case 2.1. When t ∈ {x, y}.

Without loss of generality (by the symmetry of x and y), we may assume that y = t.

Case 2.1.1. When V = X ∪ {s, x, t}.

Recall that G contains no arc between s and t. Hence, by Lemma 17-(2), G contains an
arc between s and x, and there exists exactly one such arc e = sx ∈ E (see Fig. 27), since
(G′[[X]], x, y) ∈ D1

α′,β′ and |l(G; s, t)| = 2. We assume ψG(e) = 1Γ by shifting at x if necessary.

In the same way as the previous section, let G̃ := G′[[X]]/3Y for a maximal 3-contractible vertex
set Y ⊆ X with v0 ∈ Y if exists, and G̃ := G′[[X]] otherwise. We then have (G̃, x, t) ∈ D0

α,β,
and consider the three cases in Definition 13 separately.

Case 2.1.1.1. Suppose that (G̃, x, t) is in the latter case of Case (A) (see Fig. 28). We may
assume that the label of every arc in E(X + x) is 1Γ (by shifting at vertices in X if
necessary). If ψG(e0) = 1Γ, then obviously (G, s, t) ∈ D0

α,β. Otherwise (i.e., if ψG(e0) ̸=
1Γ), since G[X] is connected, there exists a v0–w path in G′[[X]] for each neighbor w ∈
NG(t), and hence |l(G, s, t)| ≥ 3 by Lemma 20. Note that any 3-contraction does not
make an effect on the above argument.

Case 2.1.1.2. Suppose that (G̃, x, t) is in the former case of Case (A) (see Fig. 29). We may
assume that the label of every arc in E(X + t) is 1Γ and in δG(x) − e leaving x is 1Γ or
α with α−1 ̸= α (recall that we may assume β = 1Γ by Lemma 17-(1)). Note again that

24



any 3-contraction does not make an effect on whether (G̃, x, t) is in Case (A) or not, and
hence we may assume that G̃ = G′[[X]].

Let H be the graph obtained from G − s (which coincides with G′[[X]] if xt ̸∈ E) by
splitting x into two vertices x0 and x1 so that every arc leaving x in G − s with label
αi ∈ {1Γ, α} leaves xi in H for each i = 0, 1 (see Fig. 30).

Since l(G; s, t) = {1Γ, α}, either ψG(e0) = 1Γ or ψG(e0) = α. Suppose that ψG(e0) = 1Γ.
If H contains disjoint v0–x1 path P and x0–t path Q, then we can construct an s–t
path of label α−1 ∈ Γ \ {1Γ, α} in G by concatenating e0, P , and Q with identifying
x0, x1 ∈ V (H) as x ∈ V . Otherwise, by Theorem 1, H can be embedded on a plane so
that v0, x0, x1, t ∈ V (H) are on the outer boundary in this order (note that if there exists
a vertex set Y ⊆ V (H) \ {v0, x0, x1, t} = V \ {v0, x, t} such that |NH(Y )| ≤ 3, then either
|NG(Y )| ≤ 2 or |NG(Y )| ≤ 3 and G[[Y ]] is balanced, which contradicts Claim 21 or 22,
respectively). This embedding can be easily extended to an embedding of G by merging
x0, x1 ∈ V (H) into x ∈ V and by adding s, e0 = sv0, and e = sx, and the resulting
embedding satisfies the conditions of Case (C) in Definition 13 (cf. Lemma 18), which
implies (G, s, t) ∈ D0

α,β, a contradiction.

Otherwise, ψG(e0) = α. Also in this case, by a similar argument to the above, we can
either construct an s–t path of label α2 ∈ Γ\{1Γ, α} in G by concatenating e0 and disjoint
v0–x0 path P and x1–t path Q with identifying x0, x1 ∈ V (H) as x ∈ V , or embed G so
that (G, s, t) is in Case (C).

Figure 29: Case 2.1.1.2. Figure 30: H in Case 2.1.1.2.

Case 2.1.1.3. Suppose that (G̃, x, t) is in Case (B). If G̃ = G′[[X]], it is easy to confirm that
{x} is 3-contractible in G (if there is no arc between x and t) or |l(G; s, t)| ≥ 3 (otherwise,
i.e., if xt ∈ E) by Lemma 20 (see Fig. 31).

Otherwise (i.e., if G̃ = G′[[X]]/3Y for some Y ⊆ X), we have either NG′(Y ) = {x, v1, v2}
or NG′(Y ) = {v3, v4, t}. Suppose that NG′(Y ) = {v3, v4, t}. In this case, we can derive a
contradiction by Menger’s Theorem in a similar way to Case 1.2. That is, G′[[Y ]] contains
either two disjoint paths between {v0, t} and {v3, v4} or a 1-cut w ∈ Y separating them
(possibly w = v0). In the former case, |l(G; s, t)| ≥ 3 by Lemma 20, and in the latter case,
G contains a 2-cut {x,w} separating {v3, v4} from {s, v0, t}, which contradicts Claim 21.

Otherwise, NG′(Y ) = {x, v1, v2} (see Fig. 32). If xt ∈ E, then we can similarly derive
a contradiction by Menger’s Theorem, i.e., either |l(G; s, t)| ≥ 3 by Lemma 20 (G′[[Y ]]
contains two disjoint paths between {v0, x} and {v1, v2}) or G contains a 2-cut {w, t}
(G′[[Y ]] contains a 1-cut w ∈ Y + x separating {v0, x} and {v1, v2}). Otherwise, NG(Y +
x) = {s, v1, v2}. Since Y + x is not 3-contractible in G by Claim 22, G[[Y + x]] is not
balanced. If |l(G[[Y + x]]; s, v1)| = 1, then G contains a 3-contractible vertex set Z ⊆
Y + x with NG(Z) = {s, v1, w} for some w ∈ Y (note that G′[Y ] = G[Y ] is connected
by Definition 8), a contradiction. Otherwise, i.e., if |l(G[[Y + x]]; s, v1)| ≥ 2, we have
|l(G; s, t)| ≥ 3 by Lemma 20.
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Figure 31: Case 2.1.1.3 (G̃ = G′[[X]]). Figure 32: Case 2.1.1.3 (G̃ = G′[[X]]/3Y ).

Case 2.1.1.4. Suppose that (G̃, x, t) is in Case (C). In this case, by extending the x–t path P (in
Lemma 18) to an s–t path using the arc e = sx, we can see that (G′, s, t) (or (G′/3Y, s, t)
if G̃ = G′[[X]]/3Y ) is also in Case (C) (see Fig. 33), which contradicts (G′, s, t) ̸∈ D1

α,β.

Figure 33: Case 2.1.1.4. Figure 34: Case 2.1.2.

Case 2.1.2. When V \ (X ∪ {s, x, t}) ̸= ∅.

Let Y := V \ (X ∪ {s, x, t}). Since Y is not 3-contractible in G by Claim 22, G[[Y ]] is not
balanced. We focus on the graph G − X − t, which coincides with G[[Y ]] − t if sx ̸∈ E (see
Fig. 34). We have (G[[Y ]]− t, s, x) ∈ D by Claim 25, and hence (G−X − t, s, x) ∈ D. Suppose
that G −X − t is not balanced. In this case, |l(G −X − t; s, x)| ≥ 2 by Lemma 5, and hence
|l(G; s, t)| ≥ 3 by Lemma 20 (recall that (G′[[X]], x, t) ∈ Dα′,β′).

Otherwise, G −X − t is balanced. By Claim 25 (with the symmetry of s and t), we have
(G−X− s, x, t) ∈ D and hence |l(G−X− s, x, t)| ≥ 2. This implies that G[[X]]− t is balanced,
since otherwise |l(G; s, t)| ≥ 3 by Lemma 20 (note that (G[[X]] − t, s, x) ∈ D by Claim 25). In
this case, by Lemma 4, we may assume that ψG(e) = 1Γ for every e ∈ E \ (δG(t) + e0) (by
shifting at each v ∈ V \ {s, t} if necessary).

If ψG(e0) = 1Γ, then G− t is also balanced, and hence (G, s, t) ∈ D0
α,β in the latter case of

Case (A) in Definition 13, a contradiction. Otherwise, we have |l(G; s, t)| ≥ 3 by Lemma 20
(we choose P1 := (s, e0, v0) and P2 as an arbitrary s–x path in G −X − t, there are two arcs
entering t from X with distinct labels since X is not 3-contractible in G by Claim 22, and recall
that G[X] is connected as discussed just before starting Case 2.1), a contradiction.

Case 2.2. When t ̸∈ {x, y}.

Suppose that V = X ∪ {s, x, y, t}. Then, by the symmetry of x and y, we may assume that
there exists an arc e = sx ∈ δG(s) such that (G − e, s, t) ∈ Dα,β \ D1

α,β (recall the discussion
in the first paragraph of this section, Section 5.5). Besides, t is adjacent to both of x and y
since otherwise {s, y} or {s, x} is a 2-cut in G, which contradicts Claim 21. Hence, by choosing
e instead of e0, we can reduce this case to Case 2.1 (since x and t are adjacent, t must be a
neighbor of any 2-contractible vertex set in G− e that contains x).
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Figure 35: When V = X ∪ {s, x, y, t}. Figure 36: When V \ (X ∪ {s, x, y, t}) ̸= ∅.

In what follows, we assume that Y := V \ (X ∪ {s, x, y, t}) ̸= ∅, and consider the following
two cases separately: when G−X − s is balanced and when not.

Case 2.2.1. When G−X − s is balanced.

Since Y is not 3-contractible in G by Claim 22, there exists an arc e′ = sv′ ∈ δG(s) with
v′ ∈ Y such that G − e′ contains a 2-contractible vertex set X ′ ⊆ V \ {s, t} with v′ ∈ X ′

and NG′(X ′) = {x′, y′} for some distinct x′, y′ ∈ V \ {s, v′} (recall that, if G − e′ contains
no 2-contractible vertex set, then we can reduce this case to Case 1 by choosing e′ instead of
e0). Choose minimal X ′. If {x′, y′} ⊆ Y ∪ {x, y, t}, then G[[X ′]] is balanced and hence X ′ is
3-contractible in G, a contradiction. Besides, if {x′, y′} ⊆ X, then G − e′ contains a smaller
2-contractible vertex set X ′′ ⊊ X ′ with v′ ∈ X ′′ and NG′(X ′′) = {x, y}.

Thus we have |{x′, y′} ∩ X| = 1, and assume x′ ∈ X and y′ ∈ Y ∪ {x, y, t} (see Fig. 37).
Let Z ⊆ Y be the vertex set of the connected component of G − {x, y, y′} − e′ that contains
v′. Then, since Z is not 3-contractible in G and v′ is separated from both s and t by {x′, y′}
in G − e′, we have NG−e′(Z) = {x, y, y′} and y′ ̸∈ {x, y}. If y′ = t, then this case reduces to
Case 2.1 by choosing e′ instead of e0. Otherwise, {s, y′} is a 2-cut in G separating v′ from t,
which contradicts Claim 21.

Figure 37: Case 2.2.1.

Case 2.2.2. When G−X − s is not balanced.

Recall that G[X] is connected (discussed just before starting Case 2.1). Suppose that
G[[X]] − x and G[[X]] − y are balanced. Then, by Lemma 4, we may assume that ψG(e) = 1Γ
for every e ∈ E(G[[X]]) by shifting at each v ∈ X ∪ {x, y} if necessary. This implies that G[[X]]
is also balanced, which contradicts Claim 22.

Thus, at least one of G[[X]] − x and G[[X]] − y is not balanced. By Claim 25 and the
symmetry of x and y, (G[[X]]− x, s, y) ∈ D and (G[[X]]− y, s, x) ∈ D. Hence, we may assume
that |l(G[[X]] − y; s, x)| ≥ 2 by Lemma 5. Note that G − X − s − y contains an x–t path
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(otherwise, {s, y} is a 2-cut in G separating x from t, which contradicts Claim 21). This implies
|l(G[[X]]− y; s, x)| = 2 since |l(G; s, t)| = 2.

Let Z ⊆ Y ∪{x, y, t} be the set of vertices that are contained in some x–t path in G−X− s
(i.e., the vertex set of the 2-connected component of (G−X−s)+r+rx+rt that contains both
of x and t, except for r, by Lemma 2). Then, (G[Z], x, t) ∈ D. If G[Z] is not balanced, then
|l(G[Z];x, t)| ≥ 2 by Lemma 5, and hence we derive |l(G; s, t)| ≥ 3 from |l(G[[X]]−y; s, x)| = 2 by
Lemma 20 (note that there exist α′, β′ ∈ l(G[Z];x, t) such that α′β′−1 ̸= β′α′−1 by Lemma 19).
Hence, we assume that G[Z] is balanced, which implies that Z ̸= Y ∪ {x, y, t} (note that
G[Y ∪ {x, y, t}] = G−X − s).

Case 2.2.2.1. Suppose that y ∈ Z. Let W := Y \ Z ̸= ∅. Since G[Z] + r + rx + rt is a
2-connected component of G−X − s+ r+ rx+ rt, we have |NG−s(W )| ≤ 1 (see Fig. 38).
This implies that W is 2-contractible in G, which contradicts Claim 21.

Case 2.2.2.2. Suppose that Z = Y ∪{x, t}. Note that G−X− s−x contains a y–t path since
{s, x} is not a 2-cut in G. Hence, G contains no arc between x and y, and there uniquely
exists a neighbor z ∈ NG−X−s(y) with z ̸= x. Recall that G − X − s is not balanced,
which implies that there are parallel arcs between y and z (see Fig. 39). By the definition
of Z, G[Z]− x contains a z–t path (possibly of length 0). Hence, by Lemma 20, we may
assume that |l(G[[X]]; s, y)| = 1.

In this case, X = {v0} and G′[[X]] consists of an arc between v0 and y and two parallel
arcs between v0 and x, by Claim 25. Suppose that there exists an arc e′ from s to z′ ∈ Z
in G. If G[Z] contains two disjoint paths between {z′, t} and {x, z} (possibly of length 0,
e.g., z′ = z), then we derive |l(G; s, t)| ≥ 3 by Lemma 20 (e.g., if G[Z] contains disjoint
z′–z path and x–t path, then let P1, P2 be two s–y paths obtained from by extending the
z′–z path using e′ = sz′ and the parallel arcs between y and z). Otherwise, by Menger’s
Theorem, G[Z] contains a 1-cut w ∈ Z − t separating them, which implies that {s, w} is
a 2-cut in G, contradicting Claim 21.

Thus we have s ̸∈ NG(Z). Since G[Z] is balanced and contains no contractible vertex set,
Z = {x, z, t} (note that z ̸∈ {x, t} since Y ̸= ∅). By Lemma 17-(2), there must be single
arcs between s and y and between x and t, which leads to Case (B) in Definition 13. Note
that the labels of arcs are easily confirmed according to l(G; s, t) = {1Γ, α}.

Figure 38: Case 2.2.2.1. Figure 39: Case 2.2.2.2.

Case 2.2.2.3. Otherwise, Z ⊊ Y ∪ {x, t}. Let W := Y \ Z ̸= ∅. By the definition of Z, we
have NG−s(W ) ⊆ {y, z} for some z ∈ Z − x. Since G contains no 2-contractible vertex
set by Claim 21, we have NG(W ) = {s, y, z} (see Fig. 40). If |l(G[[W ]]− z; s, y)| ≥ 2, then
we derive |l(G; s, t)| ≥ 3 from (G′[[X]], x, y) ∈ D1

α′,β′ by Lemma 20.
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Hence, suppose that |l(G[[W ]] − z; s, y)| = 1. Then, (G[[W ]] − z, s, y) ̸∈ D or G[[W ]] − z
is balanced by Lemma 5. In the former case, G[[W ]] − z contains a 1-cut w ∈ W , which
implies that {w, z} is a 2-cut in G separating some vertex from both s and t, contradicting
Claim 21. In the latter case, there are parallel arcs between z and w ∈W , since G[[W ]]−s
is not balanced (recall that G−X−s is not balanced and G[Z] is balanced). If W ̸= {w},
then G contains a contractible vertex set W ′ ⊊W with NG(W

′) ⊆ {s, w, y} (see Fig. 41),
which contradicts Claim 22. Besides, by Claim 25, we have X = {v0} since otherwise
we derive |l(G; s, t)| ≥ 3 from |l(G[[X]]; s, y)| ≥ 2. Thus, {y} is contractible or there are
parallel arcs from s to y, which also leads to |l(G; s, t)| ≥ 3 by Lemma 20.

Figure 40: Case 2.2.2.3 (general). Figure 41: Case 2.2.2.3 (W ′ is 3-contractible).
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