Exact Matching in Matrix Multiplication Time

Ryotaro Sato(Preferred Networks, Inc.)Yutaro Yamaguchi(Osaka University)

HJ 2025@Science Tokyo

2025/5/28

Input: G = (V, E): Undirected Graph, $w: E \to \{0, 1\}, k \in \mathbb{Z}$ **Question:** Does a **Perfect Matching** $M \subseteq E$ with w(M) = k exist?

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$ **Question:** Does a **Perfect Matching** $M \subseteq E$ with w(M) = k exist?

• Randomized Polytime Algorithm in general [Mulmuley–Vazirani–Vazirani 1987]

VS.

Deterministic Polytime Algorithm for very limited cases

[Karzanov 1987; Vazirani 1989, Yuster 2012; Galluccio–Loebl 1999; ...]

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$ **Question:** Does a **Perfect Matching** $M \subseteq E$ with w(M) = k exist?

• Randomized Polytime Algorithm in general [Mulmuley-Vazirani-Vazirani 1987]

<u>Thm.</u> One can test, for every k at once, whether an EM exists or not in $O(n^{\omega} \text{poly}(\log n))$ time (field operations) in total. ($\omega < 2.37134$)

e.g., [Camerini–Galbiati–Maffioli 1992] + [Storjohann 2003]

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$ **Question:** Does a **Perfect Matching** $M \subseteq E$ with w(M) = k exist?

• Randomized Polytime Algorithm in general [Mulmuley-Vazirani-Vazirani 1987]

<u>**Thm.</u>** One can test, for every k at once, whether an EM exists or not in $O(n^{\omega} \frac{\text{poly}(\log n)}{\log n})$ time (field operations) in total. ($\omega < 2.37134$)</u>

[This work]

e.g., [Camerini–Galbiati–Maffioli 1992] + [Storjohann 2003]

Idea: Reduce to computing the Characteristic Polynomial det(tI - A)

Outline

- Basics: Matching and Tutte Matrix
- An $O(n^{\omega})$ -time Randomized Algorithm for Perfect Matching (Existence)
- An $O(n^{\omega})$ -time Randomized Algorithm for Exact Matching (Existence)
- Remarks and Open Questions

Outline

- Basics: Matching and Tutte Matrix
- An $O(n^{\omega})$ -time Randomized Algorithm for Perfect Matching (Existence)
- An $O(n^{\omega})$ -time Randomized Algorithm for Exact Matching (Existence)
- Remarks and Open Questions

Tutte Matrix

F: field (e.g., GF(p) for some prime p)

The Tutte matrix T(G) of G = (V, E) is a $V \times V$ matrix defined as follows:

• Fix a total order on V

•
$$X_E \coloneqq \{x_e \mid e \in E\}$$
: indeterminates
• $T(G)_{u,v} \coloneqq \begin{cases} x_e & e = \{u,v\} \in E, \ u < v \\ -x_e & e = \{u,v\} \in E, \ u > v \\ 0 & \{u,v\} \notin E \end{cases}$

$$\begin{bmatrix} 0 & x_{12} & 0 & x_{14} \\ -x_{12} & 0 & x_{23} & 0 \\ 0 & -x_{23} & 0 & x_{34} \\ -x_{14} & 0 & -x_{34} & 0 \end{bmatrix}$$

Tutte Matrix (Weighted)

 (G_0, G_1) : EM instance (0/1-edge-weighted graph), where $G_i = (V, E_i)$ is the subgraph formed by edges of weight *i*

The Tutte matrix of (G_0, G_1) is defined as follows:

- *y*: extra indeterminate
- $T(G_0, G_1) \coloneqq T(G_0) + yT(G_1)$

Tutte Matrix (Weighted)

<u>Thm.</u> (G_0, G_1) has a Perfect Matching of weight exactly k

 $\Leftrightarrow [y^k] \operatorname{pf}_{\Lambda} T(G_0, G_1) \not\equiv 0 \text{ (coeff. of } y^k \text{ as a polynomial of } x_e \text{-s})$

- *y*: extra indeterminate
- $T(G_0, G_1) \coloneqq T(G_0) + yT(G_1)$

e.g., [MVV1987, CGM1992]

Perfect/Exact Matching via Tutte Matrix

<u>Thm.</u>

- G has a Perfect Matching \Leftrightarrow pf $T(G) \not\equiv 0 \Leftrightarrow \det T(G) \not\equiv 0$
- (G_0, G_1) has a Perfect Matching of weight exactly k $\Leftrightarrow [y^k] \operatorname{pf} T(G_0, G_1) \not\equiv 0$ (coeff. of y^k as a polynomial of x_e -s)

Generally, the problems reduce to PIT (Polynomial Identity Testing)

- **Deterministic** computation is difficult (at least unknown)
- Randomized computation is easy when the field **F** is sufficiently large

Outline

- Basics: Matching and Tutte Matrix
- An $O(n^{\omega})$ -time Randomized Algorithm for Perfect Matching (Existence)
- An $O(n^{\omega})$ -time Randomized Algorithm for Exact Matching (Existence)
- Remarks and Open Questions

Perfect Matching via Tutte Matrix

Input: G = (V, E): Undirected Graph

Question: Does a Perfect Matching $M \subseteq E$ exist?

<u>Thm.</u> G has a Perfect Matching $\Leftrightarrow \det T(G) \not\equiv 0$

Difficult to compute det $T(G) \in \mathbf{F}[X_E]$ (as a polynomial of x_e -s)

- After substituting any specific value $\tilde{x}_e \in \mathbf{F}$ to each x_e , one can compute det $\tilde{T}(G) \in \mathbf{F}$ in $O(n^{\omega})$ time **(deterministically)**
- When $|\mathbf{F}|$ is large, det $T(G) \not\equiv 0 \iff \det \tilde{T}(G) \neq 0$ with high prob.

Perfect Matching via Tutte Matrix

Input: G = (V, E): Undirected Graph

Question: Does a Perfect Matching $M \subseteq E$ exist?

<u>Thm.</u> G has a Perfect Matching $\Leftrightarrow \det T(G) \not\equiv 0$

Difficult to compute det $T(G) \in \mathbf{F}[X_E]$ (as a polynomial of x_e -s)

- After substituting any specific value $\tilde{x}_e \in \mathbf{F}$ to each x_e , one can compute det $\tilde{T}(G) \in \mathbf{F}$ in $O(n^{\omega})$ time **(deterministically)**
- When $|\mathbf{F}|$ is large, det $T(G) \neq 0 \iff \det \tilde{T}(G) \neq 0$ with high prob.

Perfect Matching via Tutte Matrix

Input: G = (V, E): Undirected Graph

Question: Does a Perfect Matching $M \subseteq E$ exist?

<u>Thm.</u> G has a Perfect Matching $\Leftrightarrow \det T(G) \not\equiv 0$

$$\begin{bmatrix} 0 & \tilde{x}_{12} & 0 & \tilde{x}_{14} \\ -\tilde{x}_{12} & 0 & \tilde{x}_{23} & 0 \\ 0 & -\tilde{x}_{23} & 0 & \tilde{x}_{34} \\ -\tilde{x}_{14} & 0 & -\tilde{x}_{34} & 0 \end{bmatrix}$$

<u>Thm.</u> f is a nonzero polynomial of x_i ($i \in [m]$) of total degree d, and r_i ($i \in [m]$) is chosen uniformly at random from $S \subseteq \mathbf{F}$ $\implies \Pr[f(r_1, ..., r_m) = 0] \leq \frac{d}{|S|}$

(Schwartz–Zippel Lemma)

 $\mathbf{F} = \mathrm{GF}(p) \ (p \gg n^2)$ is enough to test with prob. $1 - n^{-1}$ in $\mathrm{O}(n^{\omega})$ time

Outline

- Basics: Matching and Tutte Matrix
- An $O(n^{\omega})$ -time Randomized Algorithm for Perfect Matching (Existence)
- An $O(n^{\omega})$ -time Randomized Algorithm for Exact Matching (Existence)
- Remarks and Open Questions

Exact Matching via Tutte Matrix

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$ **Question:** Does a Perfect Matching $M \subseteq E$ with w(M) = k exist?

<u>Thm.</u> (G_0, G_1) has a Perfect Matching of weight exactly k $\Leftrightarrow [y^k] \operatorname{pf} T(G_0, G_1) \not\equiv 0$ (coeff. of y^k as a polynomial of x_e -s)

$$\begin{bmatrix} 0 & yx_{12} & 0 & yx_{14} \\ -yx_{12} & 0 & yx_{23} & 0 \\ 0 & -yx_{23} & 0 & x_{34} \\ -yx_{14} & 0 & -x_{34} & 0 \end{bmatrix}$$

Exact Matching via Tutte Matrix

 $\begin{bmatrix} 0 & yx_{12} & 0 & yx_{14} \\ -yx_{12} & 0 & yx_{23} & 0 \\ 0 & -yx_{23} & 0 & x_{34} \\ -yx_{14} & 0 & -x_{34} & 0 \end{bmatrix}$

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$

Question: Does a Perfect Matching $M \subseteq E$ with w(M) = k exist?

<u>Thm.</u> (G_0, G_1) has a Perfect Matching of weight exactly k $\Leftrightarrow [y^k] \operatorname{pf} T(G_0, G_1) \not\equiv 0$ (coeff. of y^k as a polynomial of x_e -s)

Almost the same approach works in $O(n^{\omega+1})$ time

- After random substitution to x_e -s, compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ by polynomial interpolation with evaluation at y = 0, 1, ..., n
- Reconstruct $pf \tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ (up to sign) using $(pf A)^2 \equiv \det A$

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$

Question: Does a Perfect Matching $M \subseteq E$ with w(M) = k exist?

<u>**Thm.**</u> (G_0, G_1) has a Perfect Matching of weight exactly k $\Leftrightarrow [y^k] \operatorname{pf} T(G_0, G_1) \not\equiv 0 \text{ (coeff. of } y^k \text{ as a polynomial of } x_e \text{-s})$

Almost the same approach works in $O(n^{\omega+1})$ time

- After random substitution to x_e -s, compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ by polynomial interpolation with evaluation at y = 0, 1, ..., n
- Reconstruct $\operatorname{pf} \tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ (up to sign) using $(\operatorname{pf} A)^2 \equiv \det A$

Input: G = (V, E): Undirected Graph, $w: E \rightarrow \{0, 1\}, k \in \mathbb{Z}$

Question: Does a Perfect Matching $M \subseteq E$ with w(M) = k exist?

<u>Thm.</u> (G_0, G_1) has a Perfect Matching of weight exactly k $\Leftrightarrow [y^k] \operatorname{pf} T(G_0, G_1) \not\equiv 0 \text{ (coeff. of } y^k \text{ as a polynomial of } x_e \text{-s})$

Almost the same approach works in $O(n^{\omega+1})$ time **Only bottleneck**

- After random substitution to x_e -s, compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ by polynomial interpolation with evaluation at y = 0, 1, ..., n
- Reconstruct $pf \tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ (up to sign) using $(pf A)^2 \equiv \det A$

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

<u>Thm.</u> For $A \in \mathbf{F}[y]^{n \times n}$ s.t. deg $a_{ij} \leq d \ (\forall i, j)$, det $A \in \mathbf{F}[y]$ is computed in $O(n^{\omega}d\text{poly}(\log n + \log d))$ time w.h.p.

[Storjohann 2003]

- Direct application of this $\rightarrow O(n^{\omega} \text{poly}(\log n))$ time w.h.p. (Las Vegas)
- We reduce the task to computing the Characteristic Polynomial det(tI A)

<u>Thm.</u> For $A \in \mathbf{F}^{n \times n}$, det $(tI - A) \in \mathbf{F}[t]$ is computed in $O(n^{\omega})$ time deterministically

[Neiger-Pernet 2021]

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

<u>Thm.</u> For $A \in \mathbf{F}[y]^{n \times n}$ s.t. deg $a_{ij} \leq d \ (\forall i, j)$, det $A \in \mathbf{F}[y]$ is computed in $O(n^{\omega}d\text{poly}(\log n + \log d))$ time w.h.p.

[Storjohann 2003]

- Direct application of this $\rightarrow O(n^{\omega} \operatorname{poly}(\log n))$ time w.h.p. (Las Vegas)
- We reduce the task to computing the Characteristic Polynomial det(tI A)

<u>Thm.</u> For $A \in \mathbf{F}^{n \times n}$, det $(tI - A) \in \mathbf{F}[t]$ is computed in $O(n^{\omega})$ time deterministically

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

<u>Thm.</u> For $A \in \mathbf{F}[y]^{n \times n}$ s.t. deg $a_{ij} \leq d \ (\forall i, j)$, det $A \in \mathbf{F}[y]$ is computed in $O(n^{\omega}d\text{poly}(\log n + \log d))$ time w.h.p.

[Storjohann 2003]

- Direct application of this $\rightarrow O(n^{\omega} \operatorname{poly}(\log n))$ time w.h.p. (Las Vegas)
- We reduce the task to computing the Characteristic Polynomial det(tI A)

<u>**Thm.</u>** For $A \in \mathbf{F}^{n \times n}$, det $(tI - A) \in \mathbf{F}[t]$ is computed in $O(n^{\omega})$ time deterministically</u>

[Neiger-Pernet 2021]

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

We reduce it to computing the Characteristic Polynomial det(tI - A) $\tilde{T}(G_0, G_1) \equiv \tilde{T}(G_0) + y\tilde{T}(G_1)$ (Definition) $\equiv \tilde{T}(G) + (y - 1)\tilde{T}(G_1)$ ($G = G_0 + G_1$) $\equiv \tilde{T}(G) \left(I + (y - 1)\tilde{T}(G)^{-1}\tilde{T}(G_1) \right)$ (G should have PM) $\equiv (y - 1)\tilde{T}(G) \left(tI - \left(-\tilde{T}(G)^{-1}\tilde{T}(G_1) \right) \right)$ ($t \coloneqq \frac{1}{y-1}$)

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

We reduce it to computing the Characteristic Polynomial det(tI - A)

$$\begin{split} \tilde{T}(G_0, G_1) &\equiv \tilde{T}(G_0) + y \tilde{T}(G_1) & \text{(Definition)} \\ &\equiv \tilde{T}(G) + (y - 1) \tilde{T}(G_1) & (G = G_0 + G_1) \\ &\equiv \tilde{T}(G) \left(I + (y - 1) \tilde{T}(G)^{-1} \tilde{T}(G_1) \right) & (G \text{ should have PM)} \\ &\equiv (y - 1) \tilde{T}(G) \left(t I - \left(- \tilde{T}(G)^{-1} \tilde{T}(G_1) \right) \right) & \left(t \coloneqq \frac{1}{y - 1} \right) \end{split}$$

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

We reduce it to computing the Characteristic Polynomial det(tI - A)

$$\begin{split} \tilde{T}(G_0, G_1) &\equiv \tilde{T}(G_0) + y \tilde{T}(G_1) & \text{(Definition)} \\ &\equiv \tilde{T}(G) + (y - 1) \tilde{T}(G_1) & (G = G_0 + G_1) \\ &\equiv \tilde{T}(G) \left(I + (y - 1) \tilde{T}(G)^{-1} \tilde{T}(G_1) \right) & \text{(}G \text{ should have PM)} \end{split}$$

<u>Thm.</u> G has a Perfect Matching $\stackrel{\text{w.h.p.}}{\Leftrightarrow} \det \tilde{T}(G) \neq 0 \iff \tilde{T}(G)$ is invertible

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

We reduce it to computing the Characteristic Polynomial det(tI - A)

$$\begin{split} \tilde{T}(G_0, G_1) &\equiv \tilde{T}(G_0) + y \tilde{T}(G_1) & \text{(Definition)} \\ &\equiv \tilde{T}(G) + (y - 1) \tilde{T}(G_1) & (G = G_0 + G_1) \\ &\equiv \tilde{T}(G) \left(I + (y - 1) \tilde{T}(G)^{-1} \tilde{T}(G_1) \right) & (G \text{ should have PM)} \\ &\equiv (y - 1) \tilde{T}(G) \left(tI - \left(- \tilde{T}(G)^{-1} \tilde{T}(G_1) \right) \right) & \left(t \coloneqq \frac{1}{y - 1} \right) \end{split}$$

Compute det $\tilde{T}(G_0, G_1) \in \mathbf{F}[y]$ after random substitution to x_e -s

We reduce it to computing the Characteristic Polynomial det(tI - A)

$$\widetilde{T}(G_0, G_1) \equiv \widetilde{T}(G_0) + y\widetilde{T}(G_1) \qquad \text{(Definition)}$$

$$\equiv \widetilde{T}(G) + (y - 1)\widetilde{T}(G_1) \qquad (G = G_0 + G_1)$$

$$\equiv \widetilde{T}(G) \left(I + (y - 1)\widetilde{T}(G)^{-1}\widetilde{T}(G_1)\right) \qquad (G \text{ should have PM})$$

$$\equiv (y - 1)\widetilde{T}(G) \left(tI - \left(-\widetilde{T}(G)^{-1}\widetilde{T}(G_1)\right)\right) \qquad (t \coloneqq \frac{1}{y-1})$$

$$=: A$$

 $\rightarrow \det \tilde{T}(G_0, G_1) \equiv (y - 1)^n \det \tilde{T}(G) \det(tI - A)$

Outline

- Basics: Matching and Tutte Matrix
- An $O(n^{\omega})$ -time Randomized Algorithm for Perfect Matching (Existence)
- An $O(n^{\omega})$ -time Randomized Algorithm for Exact Matching (Existence)
- Remarks and Open Questions

Remarks and Open Questions

Exact Matching:

Perfect Matching of weight exactly k

<u>Thm.</u> One can test w.h.p., for every k at once, whether an **E**M exists or not in $O(n^{\omega})$ time (field operations) in total. ($\omega < 2.37134$)

Idea: Reduce to computing the Characteristic Polynomial det(tI - A)

• For each possible k, an EM itself can be found in $O(n^{\omega+1})$ time by sequentially fixing $i_v \in \{0, 1\}$ ($v \in V$) (which weight should be used)

Q. Speeding-up? E.g., at once in $O(n^{\omega+1})$ time, or each in $O(n^{\omega})$ time

• A similar argument is applicable to Weighted Linear Matroid Parity, e.g., the min-length of a cycle through 3 specified vertices in $O(n^{\omega})$ time

Q. Another application of this method?

Remarks and Open Questions

Exact Matching:

Perfect Matching of weight exactly k

<u>Thm.</u> One can test w.h.p., for every k at once, whether an EM exists or not in $O(n^{\omega})$ time (field operations) in total. ($\omega < 2.37134$)

Idea: Reduce to computing the Characteristic Polynomial det(tI - A)

- For each possible k, an EM itself can be found in $O(n^{\omega+1})$ time by sequentially fixing $i_v \in \{0, 1\}$ ($v \in V$) (which weight should be used)
 - **Q.** Speeding-up? E.g., at once in $O(n^{\omega+1})$ time, or each in $O(n^{\omega})$ time
- A similar argument is applicable to Weighted Linear Matroid Parity, e.g., the min-length of a cycle through 3 specified vertices in $O(n^{\omega})$ time

Q. Another application of this method?

Remarks and Open Questions

Exact Matching:

Perfect Matching of weight exactly k

<u>Thm.</u> One can test w.h.p., for every k at once, whether an EM exists or not in $O(n^{\omega})$ time (field operations) in total. ($\omega < 2.37134$)

Idea: Reduce to computing the Characteristic Polynomial det(tI - A)

• For each possible k, an EM itself can be found in $O(n^{\omega+1})$ time by sequentially fixing $i_v \in \{0, 1\}$ ($v \in V$) (which weight should be used)

Q. Speeding-up? E.g., at once in $O(n^{\omega+1})$ time, or each in $O(n^{\omega})$ time

- A similar argument is applicable to Weighted Linear Matroid Parity, e.g., the min-length of a cycle through 3 specified vertices in $O(n^{\omega})$ time
 - **Q.** Another application of this method?