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* Odd — YES Easy to test!

* Even — NO

Parity of s—t paths = {Odd}
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Possible Labels

e 0 - YES
e 1 —> YES
e 2 > NO

Labels of s—t paths = {0, 1}
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Example 3
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Our Result (Characterization)
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Polytime Testable

* NOT Depends on Group

* Assume Constant-time Group Operations
(e.g. Addition, Comparison, ...)
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Generalizing 2-disjoint Paths
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26



Generalizing 2-disjoint Paths
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Generalizing 2-disjoint Paths
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Generalizing 2-disjoint Paths
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2-disjoint paths
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Contrast between Two Characterizations
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Finding s—t Paths of 3 Distinct Labels
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Finding s—t Paths of 3 Distinct Labels
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Finding s—t Paths of 3 Distinct Labels
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Finding s—t Paths of 3 Distinct Labels
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Finding s—t Paths of 3 Distinct Labels

HSl' ENG(S)
1] = 3

Find 3 s;—t paths Recursively
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Finding s—t Paths of 3 Distinct Labels

HSl' ENG(S)
1] = 3

Find 3 s;—t paths Recursively, and Extend them
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Finding s—t Paths of 3 Distinct Labels
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Finding s—t Paths of 3 Distinct Labels

VSL' S NG(S)
1] <2

Get s;—t paths of ALL possible labels
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Finding s—t Paths of 3 Distinct Labels

VSL' S NG(S)
1] <2

Get s;—t paths of ALL possible labels, Extend and Select
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Conclusion

* Characterization for a Group-Labeled Graph
with Exactly 2 Possible Labels of s—t paths

— Polytime Testable
— Extends Char. for 2-disjoint Paths

e Algorithm to find an s—t path with 2 Labels Forbidden

— Polytime
— NOT Depends on Group

Non-abelian or Infinite is OK
If Group Operations in Const. time
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2-contraction

def {J

e Remove all vertices in X

* Add an edge from x to y
N with each label of an x—y path through X

/2-contraction of X SV \ {s,t} with N;(X) = {x, y}\

)
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2-contraction

/2-contraction of X SV \ {s,t} with N;(X) = {x, y}\
def {J

e Remove all vertices in X

* Add an edge from x to y
with each label of an x—y path through X
\ Yy p g /

Yy L, e <Z
X X
61
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2-contraction

def {J

e Remove all vertices in X

* Add an edge from x to y
\ with each label of an x—y path through X.

fz-contraction of X SV \ {s,t} with N;(X) = {x, y}\

J
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2-contraction

def {J

e Remove all vertices in X

* Add an edge from x to y
\ with each label of an x—y path through X.

fz-contraction of X SV \ {s,t} with N;(X) = {x, y}\

J

Y
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3-contraction

/ 3-contraction of X € V' \ {s, t} with [N;(X)| =3 \
(G| X] is connected and G[[X] is balanced)

def{J

e Remove all vertices in X
\°Add an edge xy w. label [(G[X]; x, y) (‘v’x,y € NG(X))/

A\ [X] balanced
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3-contraction

/ 3-contraction of X € V' \ {s, t} with [N;(X)| =3 \
(G| X] is connected and G[[X] is balanced)

def{J

 Remove all vertices in X
\°Add an edge xy w. label [(G[X]; x, y) (‘v’x,y € NG(X))/

L e \L
/‘\65
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3-contraction

K 3-contraction of X € V' \ {s, t} with [N;(X)| =3 \
(G| X] is connected and G[[X] is balanced)

def{J

e Remove all vertices in X
\°Add an edge xy w. label [(G[X]; x, V) (‘v’x,y € Ng (X))J

/U |[X] balanced < « is unique
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