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Dulmage—Mendelshon Decomposition

[Dulmage—Mendelsohn 1958,59]

= (V*,V~; E): Bipartite Graph

* YMax. Matching in G is a union of V,
Perfect Matchings in G|V;]

— Edges between V; and V; (i # j) v,
canNOT be used.

* Ve: Edgein G|V{],
JPerfect Matching in G|V;] using e

Unique Partition of Vertex Set
reflecting Structure of Maximum Matchings

(Definition will be given later)



Our Problem

Input G = (V+,V~; E): Bipartite Graph

Goal Find a Minimum Number of Additional Edges
to Make G DM-irresi\ucibIe

/ \

DM-decomposition consists of a Single Component

= [Ve, 3M: Perfect Matching s.t. e € M| + a (Some Connectivity)

VO Vl
v, v,
VZ — V]_ V3 — Voo
Ve, Voo




Our Results (Summary)

Input G = (V+,V~; E): Bipartite Graph

Goal Find a Minimum Number of Additional Edges
to Make G DM-irreducible

* Min-Max Duality via Supermodular Arc Covering
[Frank—Jorddn 1995]

* Unbalanced ([V*| # |V~|) € Matroid Intersection

 Balanced (|[V*| = |V™|) & Perfectly Matchable
~ Strong Connectivity Augmentation [Eswaran-Tarjan 1976]

e Balanced & NOT P.M. — Direct O(nm)-time Algorithm

(Moreover, General Case)
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How to Compute DM-decomposition

G = (V*,V~; E): Bipartite Graph vt V-

O—>
* Find a Maximum Matching M in G 1/, C/L)
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How to Compute DM-decomposition
G = (V*,V~; E): Bipartite Graph vt V-

* Find a Maximum Matching M in G

* Orient Edges so that
M = Both Directions Vi
E\M = LefttoRight -

V2
* V/,: Reachable from V* \ 0*M

* V»:Reachableto V™ \ 0™ M

* I/;: Strongly Connected Component of ¢ — V; — V,,
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When Balanced & Perfectly Matchable

S
4} >
v,

——
Vs .
Vi, O——0|

DM-decomposition =

Decompoisition into

Strg. Conn. Comps. ~

TR

Make it Strg. Conn.

by Adding Edges

r Obs.

DM-irreducibility is Equivalent to
Strong Connectivity of the Oriented Graph
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Strong Connectivity Augmentation

Input G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a Minimum Number of Additional Edges
to Make G Strongly Connected

(): Strg. Conn. Comp.

O
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Strong Connectivity Augmentation
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Strong Connectivity Augmentation

Input G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a Minimum Number of Additional Edges
to Make G Strongly Connected

(): Strg. Conn. Comp.

O

Each Source needs an Entering Edge

Each Sink needs a Leaving Edge
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Strong Connectivity Augmentation

Input G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a Minimum Number of Additional Edges
to Make G Strongly Connected

: max {# of Sources, # of Sinks} edges are Necessary.

O
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Strong Connectivity Augmentation

Input G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a Minimum Number of Additional Edges
to Make G Strongly Connected

: max {# of Sources, # of Sinks} edges are Necessary.

( Thm. Itis also Sufficient.
One can find such an edge set in Linear Time.

\.

J

[Eswaran—Tarjan 1976]

r

Cor. If the input is Balanced with Perfect Matching,

Our Problem can be solved in Linear Time.

N\
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When Balanced & NOT Perfectly Matchable

[ Idea Reduce to P.M. Case by Connecting Exposed Vertices ]

Each V; (i # 0, 00) remains as it was
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When Balanced & NOT Perfectly Matchable

[ Idea Reduce to P.M. Case by Connecting Exposed Vertices ]

Each V; (i # 0, ) remains as it was

max {# of Sources, # of Sinks}

|l
# of Additional Edges
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When Balanced & NOT Perfectly Matchable

[ Idea Reduce to P.M. Case by Connecting Exposed Vertices ]

Each V; (i # 0, ) remains as it was

max {!# of Sources, # of Sinks!}

Depending on M
# of Additional Edges
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When Balanced & NOT Perfectly Matchable

[ Idea Reduce to P.M. Case by Connecting Exposed Vertices ]

* (# of Sources or of Sinks) depends on Max. Matching M
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When Balanced & NOT Perfectly Matchable

[ Idea Reduce to P.M. Case by Connecting Exposed Vertices ]

* (# of Sources or of Sinks) depends on Max. Matching M

* Find Eligible Perfect Matchings in G|V, ] and in G[V,]
— Minimizing (# of Sources in V,) and (# of Sinks in V)
— Just by finding two edge-disjoint s—t paths O(n) times
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When Balanced & NOT Perfectly Matchable

[ Idea Reduce to P.M. Case by Connecting Exposed Vertices ]

* (# of Sources or of Sinks) depends on Max. Matching M

* Find Eligible Perfect Matchings in G|V, ] and in G[V,]
— Minimizing (# of Sources in V,) and (# of Sinks in V)
— Just by finding two edge-disjoint s—t paths O(n) times

* Optimality is guaranteed by Min-Max Duality

Thm. If the inputis Balanced (in fact, NOT necessary),

Our Problem can be solved in O(nm) time.
[BIKY 2018]
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Overview

* Min-Max Duality
* Polytime by Ellipsoid

Combinatorial
Supermodular Pseudopolytime

Arc Covering
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Definition of DM-decomposition

G = (V*,V~; E): Bipartite Graph vt
O

V-
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Definition of DM-decomposition

G = (V*,V~; E): Bipartite Graph vt V-
O

feXT) = To(XD)|—|XT| XT€VT)
(Surplus for Hall’s Condition)

e (XT)
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Definition of DM-decomposition
G = (V*,V~; E): Bipartite Graph vt V-

Fo (X = L)) - 1] (et v [
(Surplus for Hall’s Condition)

fc is Submodular

e Minimizers form Distributive Lattice

e X € X{ € -+ € X;': Maximal Chain O
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Definition of DM-decomposition

G = (V*,V~; E): Bipartite Graph vt V-

+ + + + + O Vo

fe(XT) =le(XD)| - [XT] XT cV™)
(Surplus for Hall’s Condition) Vi

fc is Submodular | v,
* Minimizers form Distributive Lattice
* Xg € X{ € -+ € X, : Maximal Chain O Ve

V0+ = XJ, Vo =1 (Xa')

Vim =X \X;"y, Vi =TeX)\TeX"1)

Va =VE\Xy, Vo =V \T:Xy)
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Rephrasing of DM-irreducibility

G = (V*,V~; E): Bipartite Graph

feXT) = IIe(XD| - [XT| XT V™)
(Surplus for Hall’s Condition)
* When |[V*| < |V~| (Unbalanced)
— @ € V7 isaunique minimizer
S Ie(XH) > |1 XY (@+vXT V™)

v+ V-

%
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Rephrasing of DM-irreducibility

G = (V*,V~; E): Bipartite Graph vt V-
T

foXT) = Il(XD)| - |XT]| XT V™)

(Surplus for Hall’s Condition)

* When |[V*| < |V~| (Unbalanced) 74

— @ € V1 isaunique minimizer

S Ie(XH) > |1 XY (@+vXT V™) I
 When |[V*| = |V~| (Balanced)

— Only @ and V* are minimizers Symmetrically
o L&D >IXT| @+vxtcvt)  forV™
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Min-Max Duality (Unbalanced Case)

Input G = (V*,V~; E): Bipartite Graph (|[V| < |[V7|)

Goal Find a Smallest Set F of Additional Edges
st. [Teor(XD)| > XY (@ #VXTCVT)

|F| = z (1—fGA(XJr)) (VX T: Subpartition of V1)

KIEIL e (XD — X7
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Min-Max Duality (Unbalanced Case)

Input G = (V*,V~; E): Bipartite Graph (|[V| < |[V7|)

Goal Find a Smallest Set F of Additional Edges
st. [Teor(XD)| > XY (@ #VXTCVT)
|F| = z (1- fGSXJr)) (VX T: Subpartition of V1)
XTexs Te (XD — X7

\ J
@ )

Thm. min { |F| | G + F is DM-irreducible }

max { Y y+cyr+(1 — fg(X*)) | X *: Subpartition of V* }

[BIKY 2018]
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Min-Max Duality (Balanced Case)

Input G = (V*,V~; E): Bipartite Graph ([V*| = |V™])

Goal Find a Smallest Set F of Additional Edges
st. [Toer(XD)| > |XE| (@ = vXE V)

f

.

{max {15(X*) | X*: Proper Subpartition of VV* },}
max

Thm. min { |F| | G + F is DM-irreducible }
Il xXx* = {vE}

max {TE(X_) | X ~: Proper Subpartition of V~ }

J

T (XF) = Zx+ex+(1 — £ (X+)) [BIKY 2018]

G = (Vv=,v+; E): Interchanging V* and V~
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Supermodular Arc Covering

( )

Thm. V%, V™ Finite Sets (possibly intersecting)

F € 2V x 2V": Crossing Family (Constraint Set)
g:F = Z., Supermodular (Demand on F)

The minimum cardinality of a multiset A: V" XV~ > Z,
of directed edges in V™ X V™~ that covers g is equal to

max {Z(XJ,’X_)ESg(XJr,X‘) | S: pairwise independent}

[Frank—Jordan 1995]

e Packing (Max) vs. Covering (Min) type Strong Duality
* Polytime Solvability by Ellipsoid Method

* Including Directed k-Connectivity Augmentation etc.
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Supermodular Arc Covering

Thm. V%, V™ Finite Sets (possibly intersecting)

F € 2V x 2V": Crossing Family (Constraint Set)
g:F = Z., Supermodular (Demand on F)

The minimum cardinality of a multiset A: V" XV~ > Z,
of directed edges in V™ X V™~ that covers g is equal to

max {Z(XJ,’X_)ESg(XJr,X‘) | S: pairwise independent}

[Frank—Jordan 1995]

By defining F and g appropriately for Our Problem,
we obtain Min-Max Duality Theorems for Our Problem
(via some nontrivial Uncrossing arguments)
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Matroid
Intersection

P 4
P
-
P 4
P 4
-
-
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-

Unbalanced

Faster
Weighted ver. OK

Overview

[ Our Problem ]

-7 O(nm)-time

Weighted ver. NP-hard
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Weighted Problem (Unbalanced Case)

Input G = (V+,V~; E): Bipartite Graph (V| < |[V7])
c:(V* xV7™)\ E - R, (Cost on Addition)

Goal Find a Minimum-Cost Set I of Additional Edges
s.t. G + F is DM-irreducible
JAN

/  \

Lem. 3G’ € G + F: Forest s.t. [T.:(v)| =2 (Vv EVT)
- [BIKY 2018]
T (v)] = 2 Minimally

DM-irreducible

G+ F
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Weighted Problem (Unbalanced Case)

Input G = (V+,V~; E): Bipartite Graph (V| < |[V7])
c:(V* xV7™)\ E - R, (Cost on Addition)

Goal Find a Minimum-Cost Set I of Additional Edges
s.t. G + F is DM-irreducible
JAN

Lem. 3G’ € G + F: Forest s.t. [T.:(v)|=2 (Vv eEVT)
[BIKY 2018]

Reduce to find a Min-Weight Common Base in

M, : Graphic Matroid (with 2|V *|-Truncation)
M, : Partition Matroid (Degree Constraint on V™)

0 (e€E)

y:VE X V™ > Ry (Weight); y(e) = {c(e) (e & E)
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Our Results (Summary)

Input G = (V+,V~; E): Bipartite Graph

Goal Find a Minimum Number of Additional Edges
to Make G DM-irreducible

* Min-Max Duality via Supermodular Arc Covering
[Frank—Jorddn 1995]

* Unbalanced ([V*| # |V~|) € Matroid Intersection

 Balanced (|[V*| = |V™|) & Perfectly Matchable
~ Strong Connectivity Augmentation [Eswaran-Tarjan 1976]

e Balanced & NOT P.M. — Direct O(nm)-time Algorithm

(Moreover, General Case)
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