Making Bipartite Graphs DM-irreducible

Kristóf Bérczi¹, Satoru Iwata², Jun Kato³, <u>Yutaro Yamaguchi</u>⁴

- 1. Eötvös Lorand University, Hungary.
- 2. University of Tokyo, Japan.
- 3. TOYOTA Motor Corporation, Japan.
- 4. Osaka University, Japan.

ISMP 2018 @Bordeaux July 5, 2018

Dulmage–Mendelshon Decomposition

[Dulmage–Mendelsohn 1958,59]

Dulmage–Mendelshon Decomposition

 $G = (V^+, V^-; E)$: Bipartite Graph

- $|V_0^+| > |V_0^-|$ or $V_0 = \emptyset$
- $|V_i^+| = |V_i^-| \ (i \neq 0, \infty)$
- $|V_\infty^+| < |V_\infty^-|$ or $V_\infty = \emptyset$
- ∀Max. Matching in G is a union of Perfect Matchings in G[V_i]

 V^+

Dulmage–Mendelshon Decomposition

 $G = (V^+, V^-; E)$: Bipartite Graph

- $|V_0^+| > |V_0^-|$ or $V_0 = \emptyset$
- $|V_i^+| = |V_i^-| \ (i \neq 0, \infty)$
- $|V_\infty^+| < |V_\infty^-|$ or $V_\infty = \emptyset$
- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]

Covering ALL vertices in one side

 V_0 V_1 V_2 V_{∞}

Dulmage–Mendelshon Decomposition [Dulmage–Mendelsohn 1958,59]

 $G = (V^+, V^-; E)$: Bipartite Graph

- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]
 - → Edges between V_i and V_j $(i \neq j)$ can**NOT** be used.
- $\forall e$: Edge in $G[V_i]$, \exists **Perfect Matching** in $G[V_i]$ using e

Dulmage–Mendelshon Decomposition [Dulmage–Mendelsohn 1958,59]

 $G = (V^+, V^-; E)$: Bipartite Graph

- ∀Max. Matching in G is a union of
 Perfect Matchings in G[V_i]
 - → Edges between V_i and V_j $(i \neq j)$ can**NOT** be used.
- $\forall e$: Edge in $G[V_i]$, $\exists \text{Perfect Matching}$ in $G[V_i]$ using e

Our Problem

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph

<u>Goal</u> Find a **Minimum Number of Additional Edges** to Make *G* **<u>DM-irreducible</u>**

DM-decomposition consists of a **Single Component**

= $[\forall e, \exists M: \text{Perfect Matching s.t. } e \in M] + \alpha$ (Some Connectivity)

Our Results (Summary)

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph

Goal Find a **Minimum Number of Additional Edges** to Make *G* **DM-irreducible**

- Min-Max Duality via Supermodular Arc Covering [Frank-Jordán 1995]
- Unbalanced $(|V^+| \neq |V^-|) \subseteq$ Matroid Intersection
- Balanced $(|V^+| = |V^-|)$ & Perfectly Matchable \simeq Strong Connectivity Augmentation [Eswaran-Tarjan 1976]
- Balanced & NOT P.M. \rightarrow **Direct** O(nm)-time **Algorithm** (Moreover, **General Case**)

- Find a Maximum Matching M in G
- Orient Edges so that $M \implies$ **Both Directions** \leftrightarrow $E \setminus M \implies$ **Left to Right** \rightarrow
- V_0 : Reachable from $V^+ \setminus \partial^+ M$
- V_{∞} : Reachable to $V^- \setminus \partial^- M$

- Find a Maximum Matching M in G
- Orient Edges so that $M \implies$ **Both Directions** \leftrightarrow $E \setminus M \implies$ **Left to Right** \rightarrow
- V_0 : Reachable from $V^+ \setminus \partial^+ M$
- V_{∞} : Reachable to $V^- \setminus \partial^- M$

 V^+

- Find a **Maximum Matching** *M* in *G*
- Orient Edges so that $M \implies \text{Both Directions} \iff$ $E \setminus M \implies \text{Left to Right} \rightarrow$
- V_0 : Reachable from $V^+ \setminus \partial^+ M$
- V_{∞} : Reachable to $V^- \setminus \partial^- M$

 V^+

- Find a **Maximum Matching** *M* in *G*
- Orient Edges so that $M \implies$ **Both Directions** \leftrightarrow $E \setminus M \implies$ **Left to Right** \rightarrow
- V_0 : <u>Reachable from</u> $V^+ \setminus \partial^+ M$
- V_{∞} : <u>Reachable to</u> $V^- \setminus \partial^- M$
- V_i : Strongly Connected Component of $G V_0 V_\infty$

 V^+

 V_1

 V_2

- Find a **Maximum Matching** *M* in *G*
- Orient Edges so that $M \implies$ **Both Directions** \leftrightarrow $E \setminus M \implies$ **Left to Right** \rightarrow
- V_0 : Reachable from $V^+ \setminus \partial^+ M$
- V_{∞} : Reachable to $V^- \setminus \partial^- M$
- V_i : <u>Strongly Connected Component</u> of $G V_0 V_{\infty}$

Obs.DM-irreducibilityis Equivalent toStrong Connectivityof the Oriented Graph

<u>Input</u> G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a **Minimum Number of Additional Edges** to Make *G* **<u>Strongly Connected</u>**

Goal Find a **Minimum Number of Additional Edges** to Make G **<u>Strongly Connected</u>**

Goal Find a **Minimum Number of Additional Edges** to Make G **<u>Strongly Connected</u>**

<u>Input</u> G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a **Minimum Number of Additional Edges** to Make *G* **Strongly Connected**

max {# of **Sources**, # of **Sinks**} edges are **Necessary**.

<u>Input</u> G = (V, E): Directed Graph (NOT Strg. Conn.)

Goal Find a **Minimum Number of Additional Edges** to Make *G* **Strongly Connected**

max {# of **Sources**, # of **Sinks**} edges are **Necessary**.

Thm. It is also Sufficient.

One can find such an edge set in Linear Time.

[Eswaran–Tarjan 1976]

<u>Cor.</u> If the input is <u>Balanced with Perfect Matching</u>, Our Problem can be solved in Linear Time.

Idea Reduce to P.M. Case by **Connecting Exposed Vertices**

Each V_i ($i \neq 0, \infty$) remains as it was

Idea Reduce to P.M. Case by **Connecting Exposed Vertices**

Each V_i ($i \neq 0, \infty$) remains as it was

Idea Reduce to P.M. Case by **Connecting Exposed Vertices**

Each V_i ($i \neq 0, \infty$) remains as it was

Idea Reduce to P.M. Case by Connecting Exposed Vertices

- (# of **Sources** or of **Sinks**) depends on Max. Matching *M*
- Find **Eligible Perfect Matchings** in $G[V_{\infty}]$ and in $G[V_0]$
 - Minimizing (# of Sources in V_{∞}) and (# of Sinks in V_0)
 - Just by finding two edge-disjoint s-t paths O(n) times
- Optimality is guaranteed by Min-Max Duality

Thm. If the input is Balanced (in fact, NOT necessary), Our Problem can be solved in O(nm) time.

[BIKY 2018]

Idea Reduce to P.M. Case by Connecting Exposed Vertices

- (# of **Sources** or of **Sinks**) depends on Max. Matching *M*
- Find **Eligible Perfect Matchings** in $G[V_{\infty}]$ and in $G[V_0]$
 - Minimizing (# of Sources in V_{∞}) and (# of Sinks in V_0)
 - Just by finding two edge-disjoint s-t paths O(n) times
- Optimality is guaranteed by Min-Max Duality

Thm. If the input is Balanced (in fact, NOT necessary), Our Problem can be solved in O(nm) time.

[BIKY 2018]

Idea Reduce to P.M. Case by Connecting Exposed Vertices

- (# of Sources or of Sinks) depends on Max. Matching M
- Find **Eligible Perfect Matchings** in $G[V_{\infty}]$ and in $G[V_0]$
 - Minimizing (# of Sources in V_{∞}) and (# of Sinks in V_0)
 - Just by finding two edge-disjoint s-t paths O(n) times
- Optimality is guaranteed by **Min-Max Duality**

<u>Thm.</u> If the input is Balanced (in fact, NOT necessary), Our Problem can be solved in O(nm) time.

 V^+

 $G = (V^+, V^-; E)$: Bipartite Graph

 $f_G(X^+) \coloneqq |\Gamma_G(X^+)| - |X^+| \quad (X^+ \subseteq V^+)$ (Surplus for Hall's Condition)

 f_G is Submodular

- Minimizers form Distributive Lattice
- $X_0^+ \subsetneq X_1^+ \subsetneq \cdots \subsetneq X_k^+$: Maximal Chain $V_0^+ \coloneqq X_0^+, \qquad V_0^- \coloneqq \Gamma_G(X_0^+)$ $V_i^+ \coloneqq X_i^+ \setminus X_{i-1}^+, \quad V_i^- \coloneqq \Gamma_G(X_i^+) \setminus \Gamma_G(X_{i-1}^+)$ $V_\infty^+ \coloneqq V^+ \setminus X_k^+, \qquad V_\infty^- \coloneqq V^- \setminus \Gamma_G(X_k^+)$

 V^+

$$G = (V^+, V^-; E)$$
: Bipartite Graph

 $f_G(X^+) \coloneqq |\Gamma_G(X^+)| - |X^+| \quad (X^+ \subseteq V^+)$ (Surplus for Hall's Condition)

$$G = (V^+, V^-; E)$$
: Bipartite Graph

$$f_G(X^+) \coloneqq |\Gamma_G(X^+)| - |X^+| \quad (X^+ \subseteq V^+)$$

(Surplus for Hall's Condition)

f_G is Submodular

- Minimizers form Distributive Lattice
- $X_0^+ \subsetneq X_1^+ \subsetneq \cdots \subsetneq X_k^+$: Maximal Chain

$$G = (V^+, V^-; E)$$
: Bipartite Graph

$$f_G(X^+) \coloneqq |\Gamma_G(X^+)| - |X^+| \quad (X^+ \subseteq V^+)$$

(Surplus for Hall's Condition)

f_G is Submodular

- Minimizers form Distributive Lattice
- $X_0^+ \subsetneq X_1^+ \subsetneq \cdots \subsetneq X_k^+$: Maximal Chain $V_0^+ \coloneqq X_0^+, \qquad V_0^- \coloneqq \Gamma_G(X_0^+)$ $V_i^+ \coloneqq X_i^+ \setminus X_{i-1}^+, \quad V_i^- \coloneqq \Gamma_G(X_i^+) \setminus \Gamma_G(X_{i-1}^+)$ $V_\infty^+ \coloneqq V^+ \setminus X_k^+, \qquad V_\infty^- \coloneqq V^- \setminus \Gamma_G(X_k^+)$

Rephrasing of DM-irreducibility

$$G = (V^+, V^-; E)$$
: Bipartite Graph

 $f_G(X^+) \coloneqq |\Gamma_G(X^+)| - |X^+| \quad (X^+ \subseteq V^+)$ (Surplus for Hall's Condition)

- When $|V^+| < |V^-|$ (Unbalanced)
 - → $\emptyset \subseteq V^+$ is a unique minimizer $\Leftrightarrow |\Gamma_G(X^+)| > |X^+| \quad (\emptyset \neq \forall X^+ \subseteq V^+)$
- When $|V^+| = |V^-|$ (Balanced)
 - \rightarrow Only Ø and V⁺ are minimizers
 - $\Leftrightarrow |\Gamma_G(X^+)| > |X^+| \ (\emptyset \neq \forall X^+ \subsetneq V^+)$

Rephrasing of DM-irreducibility

$$G = (V^+, V^-; E)$$
: Bipartite Graph

- $f_G(X^+) \coloneqq |\Gamma_G(X^+)| |X^+| \quad (X^+ \subseteq V^+)$ (Surplus for Hall's Condition)
- When $|V^+| < |V^-|$ (Unbalanced)
 - → Ø ⊆ V⁺ is a unique minimizer ⇔ $|\Gamma_G(X^+)| > |X^+|$ (Ø ≠ ∀X⁺ ⊆ V⁺)
- When $|V^+| = |V^-|$ (Balanced)
 - → Only Ø and V^+ are minimizers $\Leftrightarrow |\Gamma_G(X^+)| > |X^+| \quad (\emptyset \neq \forall X^+ \subsetneq V^+)$

Symmetrically for V⁻

Min-Max Duality (Unbalanced Case)

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph $(|V^+| < |V^-|)$

<u>Goal</u> Find a Smallest Set *F* of Additional Edges s.t. $|\Gamma_{G+F}(X^+)| > |X^+| \quad (\emptyset \neq \forall X^+ \subseteq V^+)$

$$|F| \ge \sum_{X^+ \in \mathcal{X}^+} \left(1 - \frac{f_G(X^+)}{|\Gamma_G(X^+)| - |X^+|} \right) \quad (\forall \mathcal{X}^+: \text{Subpartition of } V^+)$$

$$f_G = -1$$

$$f_{G+F} = 1$$

$$f_{G+F} = 1$$

Min-Max Duality (Unbalanced Case)

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph $(|V^+| < |V^-|)$
Goal Find a Smallest Set *E* of Additional Edges

s.t. $|\Gamma_{G+F}(X^+)| > |X^+| \quad (\emptyset \neq \forall X^+ \subseteq V^+)$

$$|F| \ge \sum_{X^+ \in \mathcal{X}^+} \left(1 - \frac{f_G(X^+)}{|\Gamma_G(X^+)| - |X^+|} \right) \quad (\forall \mathcal{X}^+: \text{Subpartition of } V^+)$$

<u>Thm.</u> min { |F| | G + F is DM-irreducible } ||max { $\sum_{X^+ \in \mathcal{X}^+} (1 - f_G(X^+)) | \mathcal{X}^+$: Subpartition of V^+ }

Min-Max Duality (Balanced Case)

$$\tau_G(\mathcal{X}^+) \coloneqq \sum_{X^+ \in \mathcal{X}^+} \left(1 - f_G(X^+)\right)$$

$$\overline{G} \coloneqq \left(V^-, V^+; \overline{E}\right): \text{ Interchanging } V^+ \text{ and } V^-$$

$$[BIKY 2018]$$

Supermodular Arc Covering

<u>Thm.</u> V^+, V^- : Finite Sets (possibly intersecting) $\mathcal{F} \subseteq 2^{V^+} \times 2^{V^-}$: Crossing Family (Constraint Set) $g: \mathcal{F} \to \mathbb{Z}_{\geq 0}$ Supermodular (Demand on \mathcal{F}) The minimum cardinality of a multiset $A: V^+ \times V^- \to \mathbb{Z}_{\geq 0}$ of directed edges in $V^+ \times V^-$ that **covers** g is equal to $\max_{\mathcal{S} \subseteq \mathcal{F}} \left\{ \sum_{(X^+, X^-) \in \mathcal{S}} g(X^+, X^-) \mid \mathcal{S}: \text{ pairwise independent} \right\}$

[Frank–Jordán 1995]

- Packing (Max) vs. Covering (Min) type Strong Duality
- Polytime Solvability by Ellipsoid Method
- Including Directed k-Connectivity Augmentation etc.

Supermodular Arc Covering

<u>Thm.</u> V^+, V^- : Finite Sets (possibly intersecting) $\mathcal{F} \subseteq 2^{V^+} \times 2^{V^-}$: Crossing Family (Constraint Set) $g: \mathcal{F} \to \mathbb{Z}_{\geq 0}$ Supermodular (Demand on \mathcal{F}) The minimum cardinality of a multiset $A: V^+ \times V^- \to \mathbb{Z}_{\geq 0}$ of directed edges in $V^+ \times V^-$ that **covers** g is equal to $\max_{\mathcal{S} \subseteq \mathcal{F}} \left\{ \sum_{(X^+, X^-) \in \mathcal{S}} g(X^+, X^-) \mid \mathcal{S}: \text{ pairwise independent} \right\}$

[Frank–Jordán 1995]

By defining \mathcal{F} and g appropriately for Our Problem, we obtain Min-Max Duality Theorems for Our Problem (via some nontrivial Uncrossing arguments)

Overview

Weighted Problem (Unbalanced Case)

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph $(|V^+| < |V^-|)$
 $c: (V^+ \times V^-) \setminus E \to \mathbf{R}_{>0}$ (Cost on Addition)
Goal Find a **Minimum-Cost Set** F of Additional Edges
s.t. $G + F$ is **DM-irreducible**

<u>Lem.</u> $\exists G' \subseteq G + F$: **Forest** s.t. $|\Gamma_{G'}(v)| = 2 \quad (\forall v \in V^+)$

[BIKY 2018]

$$|\Gamma_{G'}(v)| = 2$$

$$|\Gamma_{G'}(v)| = 2$$

$$G + F$$

$$|\Gamma_{G'}(v)| = 2$$

Weighted Problem (Unbalanced Case)

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph $(|V^+| < |V^-|)$
 $c: (V^+ \times V^-) \setminus E \to \mathbf{R}_{>0}$ (Cost on Addition)

Goal Find a **Minimum-Cost Set** *F* of Additional Edges s.t. G + F is **DM-irreducible**

<u>Lem.</u> $\exists G' \subseteq G + F$: **Forest** s.t. $|\Gamma_{G'}(v)| = 2 \quad (\forall v \in V^+)$

Reduce to find a Min-Weight Common Base in [BIKY 2018]

 M_1 : Graphic Matroid (with $2|V^+|$ -Truncation) M_2 : Partition Matroid (Degree Constraint on V^+)

$$\gamma: V^+ \times V^- \to \mathbf{R}_{\geq 0} \text{ (Weight); } \gamma(e) \coloneqq \begin{cases} 0 & (e \in E) \\ c(e) & (e \notin E) \end{cases}$$

45

Our Results (Summary)

Input
$$G = (V^+, V^-; E)$$
: Bipartite Graph

Goal Find a **Minimum Number of Additional Edges** to Make *G* **DM-irreducible**

- Min-Max Duality via Supermodular Arc Covering [Frank-Jordán 1995]
- Unbalanced $(|V^+| \neq |V^-|) \subseteq$ Matroid Intersection
- Balanced $(|V^+| = |V^-|)$ & Perfectly Matchable \simeq Strong Connectivity Augmentation [Eswaran-Tarjan 1976]
- Balanced & NOT P.M. \rightarrow **Direct** O(nm)-time **Algorithm** (Moreover, **General Case**)