Matroid Intersection under Restricted Oracles

Yutaro Yamaguchi

Collaborators: Kristóf Bérczi, Tamás Király, Yu Yokoi Special Thanks: Mihály Bárász, Yuni Iwamasa, Taihei Oki

JH2023@Budapest 2023/03/24

Matroid Intersection under Restricted Oracles

Q. Is "Matroid Intersection" tractable? In what sense?

K. Bérczi, T. Király, <u>Y. Yamaguchi</u>, Y. Yokoi:

Matroid Intersection under Restricted Oracles.

SIAM Journal on Discrete Mathematics (SIDMA). To appear. (arXiv:2209.14516)

M. Bárász, K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi: **Matroid Intersection under Minimum Rank Oracle**. In preparation. (Including and Extending M. Bárász: **Matroid Intersection for the Min-Rank Oracle**. *EGRES Technical Report*, QP-2006-03, 2006.)

To be continued…

Matroid Intersection under Restricted Oracles

Q. Is "Matroid Intersection" tractable? In what sense?

K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi: **Matroid Intersection under Restricted Oracles**. *SIAM Journal on Discrete Mathematics (SIDMA).* To appear. (arXiv:2209.14516)

M. Bárász, K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi: **Matroid Intersection under Minimum Rank Oracle**. In preparation. (Including and Extending M. Bárász: **Matroid Intersection for the Min-Rank Oracle**. *EGRES Technical Report*, QP-2006-03, 2006.)

To be continued… and there are also spin-off papers:

K. Bérczi, T. Király, <u>Y. Yamaguchi</u>, Y. Yokoi:

Approximation by Lexicographically Maximal Solutions in Matching and Matroid Intersection Problems. *Theoretical Computer Science*, **910** (2022), pp. 48–53.

K. Bérczi, T. Király, T. Schwarcz, Y. Yamaguchi, Y. Yokoi: **Hypergraph Characterization of Split Matroids**. *Journal of Combinatorial Theory, Series A*, **194** (2023), No. 105697.

Outline

- Overview: Question and Results
- Matroid Intersection (Basics)
	- Matroid and Matroid Intersection
	- Augmenting-Path Algorithms and Exchangeability Graph
- Matroid Intersection under Restricted Oracles
	- First Step: What can be done in general by Common Independence Oracle
	- Results on Each Restricted Oracle
- Matroid Intersection under Minimum Rank Oracle
	- How to Solve Unweighted Problem
	- Results on Weighted Problem

Outline

- Overview: Question and Results
- Matroid Intersection (Basics)
	- Matroid and Matroid Intersection
	- Augmenting-Path Algorithms and Exchangeability Graph
- Matroid Intersection under Restricted Oracles
	- First Step: What can be done in general by Common Independence Oracle
	- Results on Each Restricted Oracle
- Matroid Intersection under Minimum Rank Oracle
	- How to Solve Unweighted Problem
	- Results on Weighted Problem

What is Matroid Intersection?

The intersection of two matroids

- Efficient Algorithms and Max-Min Theorems
	- A maximum-cardinality common independent set
	- A maximum-weight common independent set (of each cardinality)
- LP Formulation
	- Intersection of matroid polytopes = matroid intersection polytope
	- Total dual integrality (TDI) and well-structured dual solution
- Many Applications (= Unified Framework) Bipartite matching, Arborescence (packing), Dijoin, etc.

What is Matroid Intersection?

The intersection of two matroids

- Efficient Algorithms and Max-Min Theorems
	- A maximum-cardinality common independent set
	- A maximum-weight common independent set (of each cardinality)
- LP Formulation
	- Intersection of matroid polytopes = matroid intersection polytope
	- Total dual integrality (TDI) and well-structured dual solution
- Many Applications (= Unified Framework) Bipartite matching, Arborescence (packing), Dijoin, etc.

The intersection of two matroids

- Efficient Algorithms and Max-Min Theorems
	- A maximum-cardinality common independent set
	- A maximum-weight common independent set (of each cardinality)
- LP Formulation
	- Intersection of matroid polytopes = matroid intersection polytope
	- Total dual integrality (TDI) and well-structured dual solution
- Many Applications (= Unified Framework) Bipartite matching, Arborescence (packing), Dijoin, etc.

The intersection of two matroids

Most of them require separate information

- Efficient Algorithms and Max-Min Theorems
	- A maximum-cardinality common independent set
	- A maximum-weight common independent set (of each cardinality)
- LP Formulation
	- Intersection of matroid polytopes = matroid intersection polytope
	- Total dual integrality (TDI) and well-structured dual solution
- Many Applications (= Unified Framework) Bipartite matching, Arborescence (packing), Dijoin, etc.

Most of them require separate information of two matroids

What is known

- Efficient Algorithms rely on **separate** oracles for the two matroids
- Max-Min Theorems and the Polyhedral Description are given by using the two rank functions **separately**

- The resulting combinatorial structure is just $\mathcal{I}_1 \cap \mathcal{I}_2$
- The polytope is completely determined by $r_{\min} = \min\{r_1, r_2\}$
- When it is seen as a special case of Matroid Matching, the input should be $r_{\text{sum}} = r_1 + r_2$ (oracle)

Basic Strategy of Efficient Algorithms

- Starting with $Y = \emptyset$, repeatedly update the current solution Y.
- For each update,
	- \circ construct the exchangeability graph w.r.t. Y ,
	- \circ find an augmenting path P in the graph, and
	- flip the current solution along the path, i.e., $Y \leftarrow Y \bigtriangleup P$.
- The edges in the graph are oriented according to **in which matroid** the two elements are exchangeable.

Assumption: Independence in each matroid can be tested.

Most of them require

separate information

of two matroids

16

Most of them require separate information of two matroids

Basic Strategy of Efficient Algorithms

- Starting with $Y = \emptyset$, repeatedly update the current solution Y.
- For each update,
	- \circ construct the exchangeability graph w.r.t. Y,
	- \circ find an augmenting path P in the graph, and
	- flip the current solution along the path, i.e., $Y \leftarrow Y \triangle P$.
- The edges in the graph are oriented according to **in which matroid** the two elements are exchangeable.

Most of them require separate information of two matroids

Basic Strategy of Efficient Algorithms

- Starting with $Y = \emptyset$, repeatedly update the current solution Y.
- For each update,
	- \circ construct the exchangeability graph w.r.t. Y ,
	- \circ find an augmenting path P in the graph, and
	- flip the current solution along the path, i.e., $Y \leftarrow Y \bigtriangleup P$.
- The edges in the graph are oriented according to **in which matroid** the two elements are exchangeable.

Most of them require separate information of two matroids

Basic Strategy of Efficient Algorithms

- Starting with $Y = \emptyset$, repeatedly update the current solution Y.
- For each update,
	- \circ construct the exchangeability graph w.r.t. Y ,
	- \circ find an augmenting path P in the graph, and
	- flip the current solution along the path, i.e., $Y \leftarrow Y \triangle P$.
- The edges in the graph are oriented according to **in which matroid** the two elements are exchangeable.

Most of them require separate information of two matroids

Basic Strategy of Efficient Algorithms

- Starting with $Y = \emptyset$, repeatedly update the current solution Y.
- For each update,
	- \circ construct the exchangeability graph w.r.t. Y,
	- \circ find an augmenting path P in the graph, and
	- flip the current solution along the path, i.e., $Y \leftarrow Y \triangle P$.
- The edges in the graph are oriented according to **in which matroid** the two elements are exchangeable.

Most of them require separate information of two matroids

Thm. [Edmonds 1970]

 M_1 , M_2 : Matroids on a common ground set S $\max\{|Y| | Y \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(Z) + r_2(S \setminus Z) | Z \subseteq S\}$

Thm. [Frank 1981]

 M_1 , M_2 : Matroids on a common ground set S, $w: S \to \mathbf{R}$ $\max\left\{w(Y) \mid Y \in \mathcal{I}_1^{(k)} \cap \mathcal{I}_2^{(k)}\right\}$ $=$ min $\left\{\begin{array}{c} \text{max} \\ v \in \mathcal{I}^{(k)} \end{array}\right.$ max $w_1(Y_1) + \max_{Y_2 \in \mathcal{I}_2^{(k)}}$ $\max_{Y_2 \in \mathcal{I}_2^{(k)}} w_2(Y_2)$ $w_1 + w_2 = w$ $J_j^{(k)} := \{ Y \in J_j \mid |Y| = k \}$

Most of them require separate information of two matroids

Thm. [Edmonds 1970]

 M_1 , M_2 : Matroids on a common ground set S max { $|Y|$ | $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ = min { $r_1(Z)$ + $r_2(S \setminus Z)$ | $Z \subseteq S$ }

$$
\frac{\text{max}(1111 \text{ s} - \frac{101110 \text{ s}}{101100 \text{ s}})}{\text{max}(1111 \text{ s} - \frac{101110 \text{ s}}{101100 \text{ s}})
$$

Thm. [Frank 1981] $\max\left\{w(Y) \mid Y \in \left[\mathcal{I}_1^{(k)} \cap \mathcal{I}_2^{(k)}\right]\right\} \quad \left(\mathcal{I}_j^{(k)} \coloneqq \left\{Y \in \mathcal{I}_j \mid |Y| = k\right\}\right)$ M_1 , M_2 : Matroids on a common ground set S, $w: S \to \mathbf{R}$ $=\min\left\{\max_{x \in \mathcal{I}} \left\{\infty\right\}\right\}$ $\max_{Y_1 \in J_1^{(k)}} w_1(Y_1) + \max_{Y_2 \in J_2^{(k)}}$ $\max_{Y_2 \in J_2^{(k)}} w_2(Y_2)$ $w_1 + w_2 = w$

"Matroid Intersection is **Tractable**" ∈ ∈ ≤ ¹ ⊆ ∈ ≤ ² ⊆ ≥ 0 ∈ maximize subject to ⊆ ¹ ¹ + ⊆ ² ² ∋ ¹ + ² ≥ ∈ ¹ ≥ 0 ⊆ minimize subject to ² ≥ 0 ⊆ LP-relaxation (Primal) Dual LP • is integer ⟹ ∃ ∗ : integer, optimal • ∃ ∗ : optimal s.t. supp ∗ is a chain ,1 ⊊ ,2 ⊊ ⋯ ⊊ , Determine the convex hull of the common independent sets [Edmonds 1970] Most of them require separate information of two matroids

Most of them require separate information of two matroids

maximize $\sum w(e)x(e)$ e∈S subject to $\sum x(e) \leq r_1(Z)$ ($Z \subseteq S$ e∈Z $\sum x(e) \leq r_2(Z) \ (Z \subseteq S)$ $e \in \overline{Z}$ $x(e) \geq 0$ $(e \in S)$ LP-relaxation (Primal)

Determine the convex hull of the common independent sets [Edmonds 1970]

$$
\begin{aligned}\n\text{Dual LP} \\
\text{minimize} \quad & \sum_{Z \subseteq S} r_1(Z) y_1(Z) + \sum_{Z \subseteq S} r_2(Z) y_2(Z) \\
\text{subject to} \quad & \sum_{Z \ni e} \left(y_1(Z) + y_2(Z) \right) \ge w(e) \quad (e \in S) \\
& y_1(Z) \ge 0 \qquad (Z \subseteq S) \\
& y_2(Z) \ge 0 \qquad (Z \subseteq S)\n\end{aligned}
$$

- w is integer $\implies \exists y_i^*$: integer, optimal
- $\exists y_i^*$: optimal s.t. $\text{supp}(y_i^*)$ is a chain $Z_{i,1} \subsetneq Z_{i,2} \subsetneq \cdots \subsetneq Z_{i,k}$

Most of them require separate information of two matroids

LP-relaxation (Primal) \sum e∈S maximize $\sum w(e)x(e)$ \leftarrow e∈Ž $\mathcal{X}(e) \leq r_1(Z)$ $\Box Z \subseteq S$ $e\in Z$ (e) $\leq r_2$ (Z \subseteq S) S $x(e) \geq 0$ $(e \in S)$ subject to $\sum x(e) \leq r_{\min}(Z)$ $Z \subseteq S$ $\min\{r_1(Z), r_2(Z)\}$ ‼z ⊆

Determine the convex hull of the common independent sets [Edmonds 1970]

Dual LP	
minimize	\n $\sum_{Z \subseteq S} r_{\text{min}}(Z) y(Z)_{Z} y_{2}(Z)$ \n
subject to	\n $\sum_{Z \in S} y(Z) \geq w(e) \quad (e \in S)$ \n
$y(Z) \geq 0$	\n $(Z \subseteq S)$ \n
$y(Z) \geq 0$	\n $(Z \subseteq S)$ \n

• w is integer $\implies \exists y^*$: integer, optimal

• $\exists y^*$: optimal s.t. supp (y^*) is a chain $Z_1 \subsetneq Z_2 \subsetneq \cdots \subsetneq Z_k$

Most of them require separate information of two matroids

Matroid Matching generalizes Matroid Intersection and Matching

Input: $f: 2^S \rightarrow \mathbb{Z}_{\geq 0}$, 2-polymatroid function (oracle) **Goal:** maximize $|Y|$ subject to $f(Y) = 2|Y|$ and $Y \subseteq S$

$$
\begin{array}{c}\n\begin{array}{c}\n\circ \\
\circ \\
G\n\end{array} \\
G = (V, E), M\n\end{array}
$$

$$
[\text{Matroid Intersection}] \ f := r_{\text{sum}} := r_1 + r_2
$$
\n
$$
[\text{Matching}] \ f(F) := |V(F)| \ (F \subseteq E = S)
$$

- Matroid matching is hard in general
	- Including NP-hard problems (e.g., Maximum Clique)
	- Instances for which exponentially many oracle calls are necessary
- Tractable for linearly represented matroids [Lovász 1980, 1981; …] [Lovász 1981; Jensen–Korte 1982] [Iwata–Kobayashi 2021; Pap 2013]

Most of them require separate information of two matroids

Matroid Matching generalizes Matroid Intersection and Matching

Input: $f: 2^S \rightarrow \mathbb{Z}_{\geq 0}$, 2-polymatroid function (oracle) **Goal:** maximize $|Y|$ subject to $f(Y) = 2|Y|$ and $Y \subseteq S$

$$
\begin{array}{c}\n\begin{array}{c}\n\bullet \\
\bullet \\
\bullet\n\end{array}\n\end{array}
$$
\n
$$
G = (V, E), M
$$

$$
[\text{Matroid Intersection}] \ f := r_{\text{sum}} := r_1 + r_2
$$
\n
$$
[\text{Matching}] \ f(F) := |V(F)| \ (F \subseteq E = S)
$$

- Matroid matching is hard in general
	- Including NP-hard problems (e.g., Maximum Clique)
	- Instances for which exponentially many oracle calls are necessary
- Tractable for linearly represented matroids [Lovász 1980, 1981; …] [Lovász 1981; Jensen–Korte 1982] [Iwata–Kobayashi 2021; Pap 2013]

Most of them require separate information of two matroids

What is known

- Efficient Algorithms rely on **separate** oracles for the two matroids
- Max-Min Theorems and the Polyhedral Description are given by using the two rank functions **separately**

- The resulting combinatorial structure is just $\mathcal{I}_1 \cap \mathcal{I}_2$
- The polytope is completely determined by $r_{\min} = \min\{r_1, r_2\}$
- When it is seen as a special case of Matroid Matching, the input should be $r_{\text{sum}} = r_1 + r_2$ (oracle)

What is known

- Efficient Algorithms rely on **separate** oracles for the two matroids
- Max-Min Theorems and the Polyhedral Description are given by using the two rank functions **separately**

- The resulting combinatorial structure is just $\mathcal{I}_1 \cap \mathcal{I}_2$
- The polytope is completely determined by $r_{\min} = \min\{r_1, r_2\}$
- When it is seen as a special case of Matroid Matching, the input should be $r_{\text{sum}} = r_1 + r_2$ (oracle)

What is known

- Efficient Algorithms rely on **separate** oracles for the two matroids
- Max-Min Theorems and the Polyhedral Description are given by using the two rank functions **separately**

- The resulting combinatorial structure is just $\mathcal{I}_1 \cap \mathcal{I}_2$
- The polytope is completely determined by $r_{\min} = \min \{r_1, r_2\}$
- When it is seen as a special case of Matroid Matching, the input should be $r_{\text{sum}} = r_1 + r_2$ (oracle)

What is known

- Efficient Algorithms rely on **separate** oracles for the two matroids
- Max-Min Theorems and the Polyhedral Description are given by using the two rank functions **separately**

- The resulting combinatorial structure is just $\mathcal{I}_1 \cap \mathcal{I}_2$
- The polytope is completely determined by $r_{\min} = \min \{r_1, r_2\}$
- When it is seen as a special case of Matroid Matching, the input should be $r_{\text{sum}} = r_1 + r_2$ (oracle)

Matroid Intersection under Restricted Oracles

Question

Is matroid intersection tractable if we only get the following information?

For each subset $X \subseteq S$,

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not, [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\},$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$, or [MAX] $r_{\max}(X) = \max\{r_1(X), r_2(X)\}.$

MAX is too weak as it gives no information on the second matroid **Obs.**if the first matroid is free, i.e., $r_1(X) = |X|$ $(\forall X \subseteq S)$.

Results and Open Problems

What we know (Results)

- Relation between Restricted Oracles
- SUM and CI+MAX can solve Weighted in general
- MIN can solve Unweighted in general, and Weighted in some cases
- CI can solve Unweighted/Weighted in some cases

What we want to know (Open)

- Can MIN solve Weighted in general? Or, is it hard?
- Can CI solve Unweighted/Weighted in general? Or, is it hard?

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$ [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}\$

[Result 1] Relation between Restricted Oracles

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$ [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}\$

- A ⇝ B (**reachable**) means the oracle B is always emulated by using the oracle A
- A \mathcal{P} B (unreachable) means ∃matroid intersection instances s.t. B can distinguish them

but A cannot

34

[Result 2] Unweighted Matroid Intersection

[Result 3] Weighted Matroid Intersection

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$ [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}\$

MIN is tractable if

- every circuit in one matroid is small (FPT), or
- no pair of circuits s.t. one includes the other.

CI is tractable if one matroid is an elementary split matroid.

Outline

- Overview: Question and Results
- Matroid Intersection (Basics)
	- Matroid and Matroid Intersection
	- Augmenting-Path Algorithms and Exchangeability Graph
- Matroid Intersection under Restricted Oracles
	- First Step: What can be done in general by Common Independence Oracle
	- Results on Each Restricted Oracle
- Matroid Intersection under Minimum Rank Oracle
	- How to Solve Unweighted Problem
	- Results on Weighted Problem

Matroid (Notation)

M: Matroid on a ground set S

- $\mathcal{I} \subseteq 2^S$: Independent set family
- $B \subseteq 2^S$: **Base (Basis)** family
- $C \subseteq 2^S$: **Circuit** family
- $r: 2^S \to \mathbb{Z}_{\geq 0}$, Rank function; $r(X) \coloneqq \max \{ |Y| | Y \subseteq X, Y \in \mathcal{I} \}$
- cl: $2^S \rightarrow 2^S$, **Closure** operator; $cl(X) := \{ e \in S \mid r(X \cup \{e\}) = r(X) \}$

Matroid (Examples)

• Partition Matroid

Elementary Split Matroid

Generalized →

[BKSYY 2023]

 $S = S_1 \cup S_2 \cup \cdots \cup S_k$, $\mathcal{I} = \{ Y \subseteq S \mid |Y \cap S_i| \leq 1 \, (\forall i \in [k]) \}$

- Cycle Matroid (Graphic Matroid) $G = (V, E)$: undirected graph $S = E$, $\mathcal{I} = \{ Y \subseteq S \mid Y \text{ forms a forest (contains no cycle)} \}$ • Paving Matroid ◦ Nearly Uniform: $\forall C \in \mathcal{C}$, $r(S) \leq |C| \leq r(S) + 1$ \overline{S} $r(S)$ ℐ
	- ∘ Hypergraph Representation: $\exists r \in \mathbf{Z}_{>0}$, $\exists \mathcal{H} \subseteq \mathcal{L}$ \overline{S} $\geq r$,

 $|H_1 \cap H_2| \leq r - 2 \, (\forall H_1, H_2 \in \mathcal{H}).$ $B = \{ Y \subseteq S \mid |Y| = r, Y \nsubseteq H (\forall H \in \mathcal{H}) \}$

 H_3

Matroid (Examples)

• Partition Matroid

 $S = S_1 \cup S_2 \cup \cdots \cup S_k$, $\mathcal{I} = \{ Y \subseteq S \mid |Y \cap S_i| \leq 1 \, (\forall i \in [k]) \}$

- Cycle Matroid (Graphic Matroid) $G = (V, E)$: undirected graph $S = E$, $\mathcal{I} = \{ Y \subseteq S \mid Y \text{ forms a forest (contains no cycle)} \}$ • Paving Matroid \overline{S} $r(S)$
	- Nearly Uniform: $\forall C \in \mathcal{C}$, $r(S) \leq |C| \leq r(S) + 1$

Elementary Split Matroid

Generalized →

[BKSYY 2023]

◦ Hypergraph Representation: ∃ $r \in \mathbf{Z}_{>0}$, ∃ $\mathcal{H} \subseteq$ \mathcal{S}_{0} $\geq r$,

 $|H_1 \cap H_2| \leq r - 2 \, (\forall H_1, H_2 \in \mathcal{H}),$ $B = \{ Y \subseteq S \mid |Y| = r, Y \nsubseteq H (\forall H \in \mathcal{H}) \}$ S_3

 $H₂$

 S_2

(**r**

 H_3 ²

 $r(S) - 1$

 H_1

 ϕ

ℐ

Matroid (Examples)

• Partition Matroid

 $S = S_1 \cup S_2 \cup \cdots \cup S_k$, $\mathcal{I} = \{ Y \subseteq S \mid |Y \cap S_i| \leq 1 \, (\forall i \in [k]) \}$

- Cycle Matroid (Graphic Matroid) $G = (V, E)$: undirected graph $S = E$, $\mathcal{I} = \{ Y \subseteq S \mid Y \text{ forms a forest (contains no cycle)} \}$ • Paving Matroid $r(S)$
	- Nearly Uniform: $\forall C \in \mathcal{C}$, $r(S) \leq |C| \leq r(S) + 1$

Elementary Split Matroid

 \downarrow Generalized

[BKSYY 2023]

◦ Hypergraph Representation: ∃ $r \in \mathbf{Z}_{>0}$, ∃ $\mathcal{H} \subseteq$ \mathcal{S}_{0} $\geq r$,

 $|H_1 \cap H_2| \leq r - 2 \, (\forall H_1, H_2 \in \mathcal{H}),$ $B = \{ Y \subseteq S \mid |Y| = r, Y \nsubseteq H (\forall H \in \mathcal{H}) \}$

 H_3

 H_1
Matroid Intersection Problem (Unweighted)

Input: S: Finite set, M_1 , M_2 : Matroids on S (**oracle**) **Goal:** maximize $|Y|$ subject to $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$

- Usually, **separate oracles** are given, i.e., we can ask for each subset $X \subseteq S$ and each $i = 1, 2$, whether $X \in \mathcal{I}_i$ or not, the rank $r_i(X)$, etc.
- Many Applications (Special Cases)
	- Bipartite matching: Partition + Partition
	- Arborescence (packing): Partition + Graphic (unions)
	- Dijoin: Partition + Crossing Submodular Function [Frank–Tardos 1981]

Matroid Intersection Problem (Weighted)

Input: S: Finite set, M_1 , M_2 : Matroids on S (**oracle**), $w: S \to \mathbb{R}$ **Goal:** maximize $w(Y)$ subject to $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ (and $|Y| = k$ for each k)

- Usually, **separate oracles** are given, i.e., we can ask for each subset $X \subseteq S$ and each $i = 1, 2$, whether $X \in \mathcal{I}_i$ or not, the rank $r_i(X)$, etc.
- Many Applications (Special Cases)
	- Bipartite matching: Partition + Partition
	- Arborescence (packing): Partition + Graphic (unions)
	- Dijoin: Partition + Crossing Submodular Function [Frank–Tardos 1981]

Matroid Intersection Problem (Weighted)

Input: S: Finite set, M_1 , M_2 : Matroids on S (**oracle**), $w: S \to \mathbb{R}$ **Goal:** maximize $w(Y)$ subject to $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ (and $|Y| = k$ for each k)

- Usually, **separate oracles** are given, i.e., we can ask for each subset $X \subseteq S$ and each $i = 1, 2$, whether $X \in \mathcal{I}_i$ or not, the rank $r_i(X)$, etc.
- The goal of this study is to clarify what happens if **the oracle is restricted**: [CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not, [MIN] $r_{\min}(X) = \min \{r_1(X), r_2(X)\}\)$, or $[SUM]$ $r_{\text{sum}}(X) = r_1(X) + r_2(X)$.

"Matroid Intersection is **Tractable**"

Most of them require separate information of two matroids

Basic Strategy of Efficient Algorithms

- Starting with $Y = \emptyset$, repeatedly update the current solution Y.
- For each update,
	- \circ construct the exchangeability graph w.r.t. Y,
	- \circ find an augmenting path P in the graph, and
	- flip the current solution along the path, i.e., $Y \leftarrow Y \triangle P$.
- The edges in the graph are oriented according to **in which matroid** the two elements are exchangeable.

Assumption: Independence in each matroid can be tested.

Exchangeability Graph

Def. • $A[Y] = A_1[Y] \cup A_2[Y]$, where ◦ $A_1[Y] := \{ (y, x) | Y - y + x \in I_1 \}$ ◦ $A_2[Y] := \{ (x, y) | Y - y + x \in I_2 \}$ • $S_1 := \{ x \mid Y + x \in \mathcal{I}_1 \}$ (Sources) • $S_2 := \{ x \mid Y + x \in \mathcal{I}_2 \}$ (Sinks) $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ \mathcal{X} \mathcal{Y} S_1 \mathbf{M}_1 , \mathbf{M}_2 : Matroids on a common ground set S, $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ $D[Y] = (S \setminus Y, Y; A[Y])$: **Exchangeability Graph** w.r.t. Y

Y

 \overline{P}

 S_{2}

Augmentability (Unweighted)

- **Thm.** M_1 , M_2 : Matroids on a common ground set S, $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ $D[Y] = (S \setminus Y, Y; A[Y])$: Exchangeability Graph w.r.t. Y
	- If $D[Y]$ has no S_1-S_2 path, then $|Y|$ is maximum.
	- If P is a **shortest** S_1-S_2 path in $D[Y]$, then $Y \triangle P \in \mathcal{I}_1 \cap \mathcal{I}_2$.

 $O(nr^2)$ time in total, where $r \coloneqq$ opt. value $\leq n$

- $D[Y]$ is constructed by $O(nr)$ oracle calls
- P is found by BFS in linear time (n vertices, $O(nr)$ edges)
- #(iteration) is $r + 1$

Augmentability (Weighted)

 $\textbf{Thm.}$ \textbf{M}_1 , \textbf{M}_2 : Matroids on a common ground set S $Y \in \text{argmax} \left\{ w(X) \mid X \in \mathcal{I}_1^{(k)} \cap \mathcal{I}_2^{(k)} \right\}$ $k=|Y|$ $D[Y] = (S \setminus Y, Y; A[Y])$: Exchangeability Graph w.r.t. Y $cost(P) := w(P \cap Y) - w(P \setminus Y)$ (*P*: path/cycle)

- $D[Y]$ has **no negative-cost cycle**.
- If P is a **shortest cheapest** S_1-S_2 path in $D[Y]$, then $Y \bigtriangleup P \in \text{argmax} \left\{ w(X) \mid X \in \mathcal{I}_1^{(k+1)} \cap \mathcal{I}_2^{(k+1)} \right\}$.

 $O(n^2r^2)$ time in total (Bellman–Ford, Weight Splitting, etc.)

Outline

- Overview: Question and Results
- Matroid Intersection (Basics)
	- Matroid and Matroid Intersection
	- Augmenting-Path Algorithms and Exchangeability Graph
- Matroid Intersection under Restricted Oracles
	- First Step: What can be done in general by Common Independence Oracle
	- Results on Each Restricted Oracle
- Matroid Intersection under Minimum Rank Oracle
	- How to Solve Unweighted Problem
	- Results on Weighted Problem

Exchangeability Graph via Restricted Oracles

Def. $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ \mathcal{X} \mathcal{Y} \overline{P} S_1 S_{2} M_1 , M_2 : Matroids on a common ground set S, $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ $D[Y] = (S \setminus Y, Y; A[Y])$: **Exchangeability Graph** w.r.t. Y • $A[Y] = A_1[Y] \cup A_2[Y]$, where • $A_1[Y] := \{ (y, x) | Y - y + x \in \mathcal{I}_1 \}$ • $A_2[Y] := \{ (x, y) | Y - y + x \in \mathcal{I}_2 \}$ • $S_1 := \{ x \mid Y + x \in \mathcal{I}_1 \}$ (Sources) • $S_2 := \{ x \mid Y + x \in \mathcal{I}_2 \}$ (Sinks)

Y

Sources and Sinks via Restricted Oracles

$$
S_i := \{ x \mid Y + x \in \mathcal{I}_i \} \ (i = 1, 2)
$$

$$
\bullet\ r\in S_1\cap S_2\ \Leftrightarrow\ Y+r\in\mathcal{I}_1\cap\mathcal{I}_2
$$

This can be recognized by CI, and hence by MIN or SUM.

•
$$
s \in S_1 \setminus S_2
$$
, $t \in S_2 \setminus S_1 \Leftrightarrow$
\n• $r_1(Y + s) = |Y| + 1$, $r_2(Y + s) = |Y|$
\n• $r_1(Y + t) = |Y|$, $r_2(Y + t) = |Y| + 1$
\n• $r_1(Y + s + t) = |Y| + 1$, $r_2(Y + s + t) = |Y| + 1$
\nThis can be recognized (up to symmetry) by MIN.
\nEven in the SUM or Cl case, we can try all possible pairs.

 $S₂$

 \boldsymbol{r}

 S_1

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not

[MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\)$

[SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$

Sources and Sinks via Restricted Oracles

$$
S_i := \{ x \mid Y + x \in \mathcal{I}_i \} \ (i = 1, 2)
$$

•
$$
r \in S_1 \cap S_2 \iff Y + r \in J_1 \cap J_2
$$
 [SUM] $r_{sum}(X) = r_1(X) + r_2(X)$
This can be recognized by CI, and hence by MIN or SUM.

•
$$
s \in S_1 \setminus S_2
$$
, $t \in S_2 \setminus S_1 \Leftrightarrow$
\n• $r_1(Y + s) = |Y| + 1$, $r_2(Y + s) = |Y|$
\n• $r_1(Y + t) = |Y|$, $r_2(Y + t) = |Y| + 1$
\n• $r_1(Y + s + t) = |Y| + 1$, $r_2(Y + s + t) = |Y| + 1$
\nThis can be recognized (up to symmetry) by MIN.

Even in the SUM or CI case, we can try all possible pairs.

 $\boldsymbol{\gamma}$ or SUM. $S_{\rm I}$ $S_{\overline{Z}}$ S_{l} \overline{t} S_{3-i} S_i

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not

[MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$

Exchangeability Graph via Restricted Oracles

Def. $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}}$ \mathcal{X} \mathcal{Y} \overline{P} S_1 S_{2} M_1 , M_2 : Matroids on a common ground set S, $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$ $D[Y] = (S \setminus Y, Y; A[Y])$: **Exchangeability Graph** w.r.t. Y • $A[Y] = A_1[Y] \cup A_2[Y]$, where • $A_1[Y] := \{ (y, x) | Y - y + x \in \mathcal{I}_1 \}$ • $A_2[Y] := \{ (x, y) | Y - y + x \in \mathcal{I}_2 \}$ $\checkmark S_1 := \{x \mid Y + x \in \mathcal{I}_1\}$ (Sources) $\checkmark S_2 := \{ x \mid Y + x \in \mathcal{I}_2 \}$ (Sinks)

Y

Exchange Edges via Restricted Oracles

$$
A_1[Y] := \{ (y, x) | Y - y + x \in I_1 \} \stackrel{x}{\sim} \longrightarrow
$$

$$
A_2[Y] := \{ (x, y) | Y - y + x \in I_2 \} \stackrel{x}{\sim} \longrightarrow
$$

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$

• $(y, x) \in A_1[Y], (x, y) \in A_2[Y]$ \iff $Y - y + x \in \mathcal{I}_1 \cap \mathcal{I}_2$

This can be recognized by CI, and hence by MIN or SUM.

- Difficult to recognize edges in one direction...
	- SUM (or CI+MAX) is strong enough to emulate Bellman–Ford (Weighted)
	- MIN can emulate BFS (Unweighted), and it is somewhat extendable
	- CI only solves some special cases, and seems too weak in general (???)

Exchange Edges via Restricted Oracles

$$
A_1[Y] := \{ (y, x) | Y - y + x \in I_1 \} \xrightarrow{x} \qquad y
$$

$$
A_2[Y] := \{ (x, y) | Y - y + x \in I_2 \} \xrightarrow{}
$$

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$

• $(y, x) \in A_1[Y]$, $(x, y) \in A_2[Y]$ \iff $Y - y + x \in \mathcal{I}_1 \cap \mathcal{I}_2$

This can be recognized by CI, and hence by MIN or SUM.

- Difficult to recognize edges in one direction...
	- SUM (or CI+MAX) is strong enough to emulate Bellman–Ford (Weighted)
	- MIN can emulate BFS (Unweighted), and it is somewhat extendable
	- CI only solves some special cases, and seems too weak in general (???)

Outline

- Overview: Question and Results
- Matroid Intersection (Basics)
	- Matroid and Matroid Intersection
	- Augmenting-Path Algorithms and Exchangeability Graph
- Matroid Intersection under Restricted Oracles
	- First Step: What can be done in general by Common Independence Oracle
	- Results on Each Restricted Oracle
- Matroid Intersection under Minimum Rank Oracle
	- How to Solve Unweighted Problem
	- Results on Weighted Problem

Unweighted Matroid Intersection via MIN [Bárász 2006]

Emulate a usual algorithm on the **Overestimated** Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct **shortcut** skipping e.
	- → **None of such fake edges is used in a shortest path!**

Thm. $Y \in \mathcal{I}_1 \cap \mathcal{I}_2$, $D[Y]$: Exchangeability Graph w.r.t. Y

- If $D[Y]$ has no S_1-S_2 path, then $|Y|$ is maximum.
- If P is a **shortest** S_1-S_2 path in $D[Y]$, then $Y \triangle P \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Unweighted Matroid Intersection via MIN [Bárász 2006]

Emulate a usual algorithm on the **Overestimated** Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct **shortcut** skipping e.
	- → **None of such fake edges is used in a shortest path!**

Thm. $Y ∈ \mathcal{I}_1 ∩ \mathcal{I}_2$, $D[Y]$: Exchangeability Graph w.r.t. Y

- If $D[Y]$ has no S_1-S_2 path, then $|Y|$ is maximum.
- If P is a **shortest** S_1-S_2 path in $D[Y]$, then $Y \triangle P \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

- $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$
- $\forall y \in Y$,
	- $(y, t) \in A_1[Y] \Leftrightarrow r_1(Y y + t) = |Y| \Leftrightarrow r_{\min}(Y y + t) = |Y|$
	- (s, y) ∈ $A_2[Y]$ ⇔ $r_2(Y y + t) = |Y|$ ⇔ $r_{\min}(Y y + s) = |Y|$
- Suppose that $\forall x \in S \setminus (Y \cup S_1 \cup S_2)$, $\forall y \in Y$,
	- Estimate $\exists (y, x) \Leftrightarrow (y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$
	- Estimate $\exists (x, y) \Leftrightarrow (x, y) \in A_{2}[Y]$ or $(s, y) \in A_{2}[Y]$

Enough to find a shortest path! (Wrong \Rightarrow **∃Shortcut)**

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$

 $A_1[Y] = \{ (y, x) | Y - y + x \in I_1 \}$

 $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

• $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$ $A_1[Y] = \{ (y, x) | Y - y + x \in I_1 \}$ $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

- $\forall y \in Y$,
	- \circ $(y, t) \in A_1[Y] \Leftrightarrow r_1(Y y + t) = |Y| \Leftrightarrow r_{\min}(Y y + t) = |Y|$
	- \circ $(s, y) \in A_2[Y] \iff r_2(Y y + t) = |Y| \iff r_{\min}(Y y + s) = |Y|$
- Suppose that $\forall x \in S \setminus (Y \cup S_1 \cup S_2)$, $\forall y \in Y$,
	- Estimate $\exists (y, x) \Leftrightarrow (y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$
	- Estimate $\exists (x, y) \Leftrightarrow (x, y) \in A_2[Y]$ or $(s, y) \in A_2[Y]$

Enough to find a shortest path! (Wrong \Rightarrow **∃Shortcut)**

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

• $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$ $A_1[Y] = \{ (y, x) | Y - y + x \in I_1 \}$ $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

- $\forall y \in Y,$
	- \circ $(y, t) \in A_1[Y] \Leftrightarrow r_1(Y y + t) = |Y| \Leftrightarrow r_{\min}(Y y + t) = |Y|$
	- (s, y) ∈ $A_2[Y]$ ⇔ $r_2(Y y + t) = |Y|$ ⇔ $r_{\min}(Y y + s) = |Y|$
- Suppose that $\forall x \in S \setminus (Y \cup S_1 \cup S_2)$, $\forall y \in Y$,
	- Estimate $\exists (y, x) \Leftrightarrow (y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$
	- ∘ Estimate $\exists (x, y) \Leftrightarrow (x, y) \in A_2[Y]$ or $(s, y) \in A_2[Y]$

Enough to find a shortest path! (Wrong \Rightarrow **∃Shortcut)**

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

- $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$
- Estimate $\exists (y, x)$ $(x \in S \setminus (Y \cup S_1 \cup S_2), y \in Y)$ \Leftrightarrow $(y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$ \Leftrightarrow $r_1(Y - y + x) = |Y|$ or $r_1(Y - y + t) = |Y|$

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$ $A_1[Y] = \{ (y, x) | Y - y + x \in I_1 \}$ $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

- $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$
- Estimate $\exists (y, x) \ (x \in S \setminus (Y \cup S_1 \cup S_2), y \in Y)$ \Leftrightarrow $(y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$ \Leftrightarrow $r_1(Y - y + x) = |Y|$ or $r_1(Y - y + t) = |Y|$ \Leftrightarrow $r_1(Y - y + x + t) = |Y|$ $|Y| = r_1(Y_{xt}) \ge r_1(Y_{xt} - y) \ge \max\{r_1(Y_x - y), r_1(Y_t - y)\}\$ $r_1(Y_x - y) + r_1(Y_t - y) \ge r_1(Y_{xt} - y) + r_1(Y - y)$ $Y_{xt} := Y + x + t$ $Y_x := Y + x$ $Y_t \coloneqq Y + t$ $x, t \in S \setminus S_1 = \mathrm{cl}_1(Y)$ $= |Y| - 1$ $x \propto - -$ 0 \boldsymbol{t} ∃ S_{2}

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$

 $A_1[Y] = \{ (y, x) | Y - y + x \in I_1 \}$

 $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

- $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$
- Estimate $\exists (y, x) \ (x \in S \setminus (Y \cup S_1 \cup S_2), y \in Y)$ \Leftrightarrow $(y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$ \Leftrightarrow $r_1(Y - y + x) = |Y|$ or $r_1(Y - y + t) = |Y|$ $\Leftrightarrow r_1(Y - y + x + t) = |Y|$ $\iff r_{\min}(Y - y + x + t) = |Y|$ $(r_2(Y - y + x + t) \ge r_2(Y + t) - 1 = |Y|)$

 $A_1[Y] = \{ (y, x) | Y - y + x \in I_1 \}$ $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$

Assume $S_1 \cap S_2 = \emptyset$, $s \in S_1$, $t \in S_2$

- $Y + s \in \mathcal{I}_1 \setminus \mathcal{I}_2$, $Y + t \in \mathcal{I}_2 \setminus \mathcal{I}_1$
- Estimate $\exists (y, x)$ $(x \in S \setminus (Y \cup S_1 \cup S_2), y \in Y)$ \Leftrightarrow $(y, x) \in A_1[Y]$ or $(y, t) \in A_1[Y]$ \Leftrightarrow $r_1(Y - y + x) = |Y|$ or $r_1(Y - y + t) = |Y|$ $\Leftrightarrow r_1(Y - y + x + t) = |Y|$ $\iff r_{\min}(Y - y + x + t) = |Y|$ \boldsymbol{t} SQ S_{2}
- Estimate $\exists (x, y) \Leftrightarrow r_{\min}(Y y + x + s) = |Y|$

 $S_i = \{ x \mid Y + x \in \mathcal{I}_i \}$ $(i = 1, 2)$ $A_1[Y] = \{ (y, x) | Y - y + x \in \mathcal{I}_1 \}$ $A_2[Y] = \{ (x, y) | Y - y + x \in I_2 \}$

Unweighted Matroid Intersection via MIN [Bárász 2006]

Emulate a usual algorithm on the **Overestimated** Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct **shortcut** skipping e.
	- → **None of such fake edges is used in a shortest path!**

Thm. $Y ∈ \mathcal{I}_1 ∩ \mathcal{I}_2$, $D[Y]$: Exchangeability Graph w.r.t. Y

- If $D[Y]$ has no S_1-S_2 path, then $|Y|$ is maximum.
- If P is a **shortest** S_1-S_2 path in $D[Y]$, then $Y \triangle P \in \mathcal{I}_1 \cap \mathcal{I}_2$.

Unweighted Matroid Intersection via MIN [Bárász 2006]

Emulate a usual algorithm on the **Overestimated** Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct **shortcut** skipping e.
	- → **None of such fake edges is used in a shortest path!**
- When the algorithm halts, a dual optimal solution is found by reachability.

Thm. max $\{ |Y| | Y \in \mathcal{I}_1 \cap \mathcal{I}_2 \} = \min \{ r_{\min}(Z) + r_{\min}(S \setminus Z) | Z \subseteq S \}$

 $|Y| = r_{\min}(Y \cap Z) + r_{\min}(Y \setminus Z) \le r_{\min}(Z) + r_{\min}(S \setminus Z) \le r_1(Z) + r_2(S \setminus Z)$ $= |Y \cap Z|$ = $|Y \setminus Z|$

Try to emulate usual algorithms on the Overestimated Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct shortcut skipping e .
	- Such **fake edges may be used** in a (shortest) cheapest path!
	- They **may cause negative-cost cycles**! (NP-hard!?)

Thm. $Y \in \mathcal{I}_1^{(k)} \cap \mathcal{I}_2^{(k)}$: Max-Weight, $cost(P) \coloneqq w(P \cap Y) - w(P \setminus Y)$ (P: path/cycle

- $D[Y]$ has no negative-cost cycle.
- If P is a **shortest cheapest** S_1-S_2 path in $D[Y]$, then $Y \bigtriangleup P \in \mathcal{I}_1^{(k+1)} \cap \mathcal{I}_2^{(k+1)}$ is max-weight.

Try to emulate usual algorithms on the Overestimated Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct shortcut skipping e .
	- Such **fake edges may be used** in a (shortest) cheapest path!
	- They **may cause negative-cost cycles**! (NP-hard!?)

Thm. $Y \in \mathcal{I}_1^{(k)} \cap \mathcal{I}_2^{(k)}$: Max-Weight, $cost(P) \coloneqq w(P \cap Y) - w(P \setminus Y)$ (P: path/cycle

- $D[Y]$ has **no negative-cost cycle**.
- If P is a **shortest cheapest** S_1-S_2 path in $D[Y]$, then $Y \bigtriangleup P \in \mathcal{I}_1^{(k+1)} \cap \mathcal{I}_2^{(k+1)}$ is max-weight.

Try to emulate usual algorithms on the Overestimated Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct shortcut skipping e .
	- Such **fake edges may be used** in a (shortest) cheapest path!
	- They **may cause negative-cost cycles**! (NP-hard!?)
- **Extra information** from **at most two-by-two exchanges** may refine the graph!
- **Any graph consistent** with all the extra information **is suitable** for emulation!!
- Finding a consistent graph is **NP-hard**… (4-coloring of 3-colorable graphs)

Extra Info. from Two-by-Two Exchange [BBKYY 2023+]

Extra information from **at most two-by-two exchanges** may refine the graph!

- $r_{\min}(Y y + x) = |Y| \iff x \in \longrightarrow y$
- Otherwise,

$$
r_{\min}(Y - y_1 - y_2 + x) = |Y| - 1 \iff x \ll 1
$$

$$
r_{\min}(Y - y + x_1 + x_2) = |Y| \qquad \Longleftrightarrow \quad \frac{x_1}{x_2} \qquad \qquad \Longleftrightarrow \quad y \quad \text{or}
$$

• Otherwise (none of the above holds), $r_{\min}(Y - y_1 - y_2 + x_1 + x_2) = |Y| - 1 \Leftrightarrow$ or

Extra Info. from Two-by-Two Exchange [BBKYY 2023+]

Extra information from **at most two-by-two exchanges** may refine the graph!

 χ

- $r_{\min}(Y y + x) = |Y| \iff x \in \longrightarrow y$
- Otherwise,

$$
r_{\min}(Y - y_1 - y_2 + x) = |Y| - 1 \iff x \ll 1
$$

$$
\circ r_{\min}(Y - y + x_1 + x_2) = |Y| \qquad \Longleftrightarrow \qquad \frac{x_1}{x_2} \qquad \qquad y \quad \text{or}
$$

 y_1

• Otherwise (none of the above holds), $r_{\min}(Y - y_1 - y_2 + x_1 + x_2) = |Y| - 1 \Leftrightarrow$

 y_1

 y_2

 \overline{y}

Extra Info. from Two-by-Two Exchange [BBKYY 2023+]

Extra information from **at most two-by-two exchanges** may refine the graph!

- $r_{\min}(Y y + x) = |Y| \iff x \in \longrightarrow y$
- Otherwise,

$$
r_{\min}(Y - y_1 - y_2 + x) = |Y| - 1 \iff x \ll 1
$$

$$
\circ \ r_{\min}(Y - y + x_1 + x_2) = |Y| \qquad \Longleftrightarrow \quad \frac{x_1 \circ \cdots}{x_n \circ \cdots} \qquad \qquad y \quad \text{or}
$$

• Otherwise (none of the above holds),

$$
r_{\min}(Y - y_1 - y_2 + x_1 + x_2) = |Y| - 1 \iff \sum_{x_1, y_1, y_2, y_3}^{x_2, y_1} \text{ or } y_1
$$

Try to emulate usual algorithms on the Overestimated Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct shortcut skipping e .
	- Such **fake edges may be used** in a (shortest) cheapest path!
	- They **may cause negative-cost cycles**! (NP-hard!?)
- **Extra information** from **at most two-by-two exchanges** may refine the graph!
- **Any graph consistent** with all the extra information **is suitable** for emulation!!
- Finding a consistent graph is **NP-hard**… (4-coloring of 3-colorable graphs)

Any graph consistent with all the extra information **is suitable** for emulation!!

Thm.
$$
Y \in \text{argmax} \{ w(X) \mid X \in \mathcal{I}_1^{(k)} \cap \mathcal{I}_2^{(k)} \} (k = |Y|)
$$

\n $D[Y]$: Exchangeability Graph w.r.t. Y
\n $\widetilde{D}[Y]$: Subgraph of the overestimation **consistent with all the extra info**.
\n $\text{cost}(P) := w(P \cap Y) - w(P \setminus Y) (P: \text{path/cycle})$

- $\widetilde{D}[Y]$ has **no negative-cost cycle**.
- $\forall \tilde{P}$: **shortest cheapest** S_1-S_2 path in $\tilde{D}[Y]$, $\exists P:$ **shortest cheapest** S_1-S_2 path in $D[Y]$ with the same vertex set, and vice versa.

Try to emulate usual algorithms on the Overestimated Exchangeability Graph

- Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
- Other edges are overestimated so that if an edge e is wrongly estimated, there is a correct shortcut skipping e .
	- Such **fake edges may be used** in a (shortest) cheapest path!
	- They **may cause negative-cost cycles**! (NP-hard!?)
- **Extra information** from **at most two-by-two exchanges** may refine the graph!
- **Any graph consistent** with all the extra information **is suitable** for emulation!!
- Finding a consistent graph is **NP-hard**… (4-coloring of 3-colorable graphs)

Tractable cases of WMI via MIN [BBKYY 2023+]

- When $\forall C_1 \in C_1$, $\forall C_2 \in C_2$, $C_1 \nsubseteq C_2$ and $C_2 \nsubseteq C_1$
	- → Finding a consistent graph is reduced to **2-SAT**
- When $\exists i \in \{1, 2\}, \forall C \in \mathcal{C}_i, |C| \leq k$ $\rightarrow \text{ O } \big(\, 2^{k} \cdot \operatorname{poly}(n) \, \big)$ time by 2-SAT + Brute-Force Guess
- **Lexicographical Maximization**
	- Max. #(heaviest); Sub. to this, Max. #(second heaviest); and so on
	- Update **with preserving the numbers of heavier elements** can be done via **Underestimation** of the Exchangeability Graph (by 2-SAT)
	- **Approximation with factor 2 or better** for the original problem [BKYY 2022]
Extra Info. from Two-by-Two Exchange [BBKYY 2023+]

Extra information from **at most two-by-two exchanges** may refine the graph!

• $r_{\min}(Y - y + x) = |Y| \iff x \in \longrightarrow y$

• Otherwise,

$$
\circ r_{\min}(Y - y_1 - y_2 + x) = |Y| - 1 \iff x \ll y_1
$$

$$
r_{\min}(Y - y + x_1 + x_2) = |Y| \qquad \Longleftrightarrow \qquad \begin{array}{c} x_1 \circ \searrow & y \text{ or} \\ x_2 \circ \searrow & y \end{array}
$$

2-SAT works! (Easy)

• Otherwise (none of the above holds),

$$
r_{\min}(Y - y_1 - y_2 + x_1 + x_2) = |Y| - 1 \Leftrightarrow \begin{cases} x_2 & \text{or} \\ x_1 & \text{or} \\ x_2 & \text{or} \end{cases}
$$

Tractable cases of WMI via MIN [BBKYY 2023+]

- When $\forall C_1 \in C_1$, $\forall C_2 \in C_2$, $C_1 \nsubseteq C_2$ and $C_2 \nsubseteq C_1$
	- → Finding a consistent graph is reduced to **2-SAT**
- When $\exists i \in \{1,2\}, \forall C \in \mathcal{C}_i, |C| \leq k$ $\rightarrow \ O\left(2^k \cdot \mathrm{poly}(n)\right)$ time by 2-SAT + Brute-Force Guess
- **Lexicographical Maximization**
	- Max. #(heaviest); Sub. to this, Max. #(second heaviest); and so on
	- Update **with preserving the numbers of heavier elements** can be done via **Underestimation** of the Exchangeability Graph (by 2-SAT)
	- **Approximation with factor 2 or better** for the original problem [BKYY 2022]

Tractable cases of WMI via MIN [BBKYY 2023+]

• When $\forall C_1 \in C_1$, $\forall C_2 \in C_2$, $C_1 \nsubseteq C_2$ and $C_2 \nsubseteq C_1$

→ Finding a consistent graph is reduced to **2-SAT**

- When $\exists i \in \{1,2\}, \forall C \in \mathcal{C}_i, |C| \leq k$ $\rightarrow \ O\left(2^k \cdot \mathrm{poly}(n)\right)$ time by 2-SAT + Brute-Force Guess
- **Lexicographical Maximization**
	- Max. #(heaviest); Sub. to this, Max. #(second heaviest); and so on
	- Update **with preserving the numbers of heavier elements** can be done via **Underestimation** of the Exchangeability Graph (by 2-SAT)
	- **Approximation with factor 2 or better** for the original problem [BKYY 2022]

Question

Is matroid intersection tractable if we only get the following information?

For each subset $X \subseteq S$,

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not, [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\},$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$, or [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}.$

MAX is too weak as it gives no information on the second matroid **Obs.**if the first matroid is free, i.e., $r_1(X) = |X|$ $(\forall X \subseteq S)$.

What we know (Results)

• Relation between Restricted Oracles

- [CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$ [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}\$
- SUM and CI+MAX can solve Weighted in general (Emulate Bellman–Ford)
- MIN can solve Unweighted in general, and Weighted in some cases
	- No circuit inclusion (2-SAT)
	- All circuits are small in one matroid (2-SAT + Brute-Force Guess, FPT)
	- Lexicographical Maximization (2-SAT, 2- or better Approximation in general)
- CI can solve Unweighted/Weighted in some cases
	- One is a partition matroid, Unweighted (Emulate BFS)
	- One is an elementary split matroid, Weighted (Brute-Force)

What we know (Results)

• Relation between Restricted Oracles

- [CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$ [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}\$
- SUM and CI+MAX can solve Weighted in general (Emulate Bellman–Ford)
- MIN can solve Unweighted in general, and Weighted in some cases
	- No circuit inclusion (2-SAT)
	- All circuits are small in one matroid (2-SAT + Brute-Force Guess, FPT)
	- Lexicographical Maximization (2-SAT, 2- or better Approximation in general)
- CI can solve Unweighted/Weighted in some cases
	- One is **partition or chain (general upper bounds)**, Unweighted (Emulate BFS)
	- One is an elementary split matroid, Weighted (Brute-Force)

What we know (Results)

• Relation between Restricted Oracles

[CI] whether $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ or not [MIN] $r_{\min}(X) = \min\{r_1(X), r_2(X)\}\$ [SUM] $r_{\text{sum}}(X) = r_1(X) + r_2(X)$ [MAX] $r_{\text{max}}(X) = \max\{r_1(X), r_2(X)\}\$

- SUM and CI+MAX can solve Weighted in general
- MIN can solve Unweighted in general, and Weighted in some cases
- CI can solve Unweighted/Weighted in some cases

What we want to know (Open)

- Can MIN solve Weighted in general? Or, is it hard?
- Can CI solve Unweighted/Weighted in general? Or, is it hard?