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Matroid Intersection under Restricted Oracles

Q.  Is “Matroid Intersection” tractable? In what sense?

K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi:
Matroid Intersection under Restricted Oracles.
SIAM Journal on Discrete Mathematics (SIDMA). To appear. (arXiv:2209.14516)

M. Bárász, K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi:
Matroid Intersection under Minimum Rank Oracle. In preparation.
(Including and Extending
M. Bárász: Matroid Intersection for the Min-Rank Oracle.
EGRES Technical Report, QP-2006-03, 2006.)

To be continued…

2



Matroid Intersection under Restricted Oracles

Q.  Is “Matroid Intersection” tractable? In what sense?

K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi: Matroid Intersection under Restricted Oracles.
SIAM Journal on Discrete Mathematics (SIDMA). To appear. (arXiv:2209.14516)

M. Bárász, K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi: Matroid Intersection under Minimum Rank Oracle.
In preparation. (Including and Extending M. Bárász: Matroid Intersection for the Min-Rank Oracle.

EGRES Technical Report, QP-2006-03, 2006.)

To be continued… and there are also spin-off papers:

K. Bérczi, T. Király, Y. Yamaguchi, Y. Yokoi:
Approximation by Lexicographically Maximal Solutions in Matching and Matroid Intersection Problems.
Theoretical Computer Science, 910 (2022), pp. 48–53.

K. Bérczi, T. Király, T. Schwarcz, Y. Yamaguchi, Y. Yokoi: Hypergraph Characterization of Split Matroids.
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Outline
• Overview: Question and Results

• Matroid Intersection (Basics)

◦ Matroid and Matroid Intersection

◦ Augmenting-Path Algorithms and Exchangeability Graph

• Matroid Intersection under Restricted Oracles

◦ First Step: What can be done in general by Common Independence Oracle

◦ Results on Each Restricted Oracle

• Matroid Intersection under Minimum Rank Oracle

◦ How to Solve Unweighted Problem

◦ Results on Weighted Problem
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The intersection of two matroids

• Efficient Algorithms and Max-Min Theorems

◦ A maximum-cardinality common independent set

◦ A maximum-weight common independent set (of each cardinality)

• LP Formulation

◦ Intersection of matroid polytopes = matroid intersection polytope

◦ Total dual integrality (TDI) and well-structured dual solution

• Many Applications (= Unified Framework)

Bipartite matching, Arborescence (packing), Dijoin, etc.

What is Matroid Intersection?
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“Matroid Intersection is Tractable”
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“Matroid Intersection is Tractable”

What is known

• Efficient Algorithms rely on separate oracles for the two matroids

• Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately

What may be asked

• The resulting combinatorial structure is just ℐ1 ∩ ℐ2

• The polytope is completely determined by 𝑟min = min 𝑟1, 𝑟2

• When it is seen as a special case of Matroid Matching,
the input should be 𝑟sum = 𝑟1 + 𝑟2 (oracle)

15
Most of them require
separate information
of two matroids



Basic Strategy of Efficient Algorithms

• Starting with 𝑌 = ∅, repeatedly update the current solution 𝑌.

• For each update,

◦ construct the exchangeability graph w.r.t. 𝑌,

◦ find an augmenting path 𝑃 in the graph, and

◦ flip the current solution along the path, i.e., 𝑌 ← 𝑌 △ 𝑃.

• The edges in the graph are oriented according to
in which matroid the two elements are exchangeable.

Assumption: Independence in each matroid can be tested.

“Matroid Intersection is Tractable”
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“Matroid Intersection is Tractable”
21

𝐌1, 𝐌2: Matroids on a common ground set 𝑆

max 𝑌 𝑌 ∈ ℐ1 ∩ ℐ2 = min 𝑟1 𝑍 + 𝑟2 𝑆 ∖ 𝑍 𝑍 ⊆ 𝑆

Thm. [Edmonds 1970]

𝐌1, 𝐌2: Matroids on a common ground set 𝑆,  𝑤: 𝑆 → 𝐑

max 𝑤 𝑌 𝑌 ∈ ℐ1
𝑘
∩ ℐ2

𝑘

= min max
𝑌1∈ℐ1

𝑘
𝑤1 𝑌1 + max

𝑌2∈ℐ2
𝑘
𝑤2 𝑌2 𝑤1 +𝑤2 = 𝑤

Thm. [Frank 1981]

Most of them require
separate information
of two matroids

ℐ𝑗
𝑘
≔ 𝑌 ∈ ℐ𝑗 𝑌 = 𝑘
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෍

𝑒∈𝑆

𝑤 𝑒 𝑥 𝑒

෍

𝑒∈𝑍

𝑥 𝑒 ≤ 𝑟1 𝑍 𝑍 ⊆ 𝑆

෍

𝑒∈𝑍

𝑥 𝑒 ≤ 𝑟2 𝑍 𝑍 ⊆ 𝑆

𝑥 𝑒 ≥ 0 𝑒 ∈ 𝑆

maximize

subject to

෍

𝑍⊆𝑆

𝑟1 𝑍 𝑦1 𝑍 +෍

𝑍⊆𝑆

𝑟2 𝑍 𝑦2 𝑍

෍

𝑍∋𝑒

𝑦1 𝑍 + 𝑦2 𝑍 ≥ 𝑤 𝑒 𝑒 ∈ 𝑆

𝑦1 𝑍 ≥ 0 𝑍 ⊆ 𝑆

minimize

subject to

𝑦2 𝑍 ≥ 0 𝑍 ⊆ 𝑆

LP-relaxation (Primal) Dual LP

• 𝑤 is integer  ⟹ ∃𝑦𝑖
∗: integer, optimal

• ∃𝑦𝑖
∗: optimal  s.t. supp 𝑦𝑖

∗ is a chain
𝑍𝑖,1 ⊊ 𝑍𝑖,2 ⊊ ⋯ ⊊ 𝑍𝑖,𝑘

Determine the convex hull of
the common independent sets

[Edmonds 1970]

Most of them require
separate information
of two matroids
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[Matroid Intersection]  𝑓 ≔ 𝑟sum ≔ 𝑟1 + 𝑟2
[Matching]  𝑓 𝐹 ≔ 𝑉 𝐹 𝐹 ⊆ 𝐸 ≕ 𝑆

• Matroid matching is hard in general

◦ Including NP-hard problems (e.g., Maximum Clique)

◦ Instances for which exponentially many oracle calls are necessary

• Tractable for linearly represented matroids
[Lovász 1981;  Jensen–Korte 1982]

[Lovász 1980, 1981; …]
[Iwata–Kobayashi 2021;  Pap 2013]

“Matroid Intersection is Tractable”
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Matroid Matching generalizes Matroid Intersection and Matching

Input: 𝑓: 2𝑆 → 𝐙≥0, 2-polymatroid function (oracle)

Goal: maximize 𝑌 subject to 𝑓 𝑌 = 2 𝑌 and 𝑌 ⊆ 𝑆

Most of them require
separate information
of two matroids

𝐺 = 𝑉, 𝐸 , 𝑀
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“Matroid Intersection is Tractable”

What is known

• Efficient Algorithms rely on separate oracles for the two matroids

• Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately

What may be asked

• The resulting combinatorial structure is just ℐ1 ∩ ℐ2

• The polytope is completely determined by 𝑟min = min 𝑟1, 𝑟2

• When it is seen as a special case of Matroid Matching,
the input should be 𝑟sum = 𝑟1 + 𝑟2 (oracle)
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“Matroid Intersection is Tractable?”

What is known

• Efficient Algorithms rely on separate oracles for the two matroids

• Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately

What may be asked

• The resulting combinatorial structure is just ℐ1 ∩ ℐ2

• The polytope is completely determined by 𝑟min = min 𝑟1, 𝑟2
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the input should be 𝑟sum = 𝑟1 + 𝑟2 (oracle)
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Matroid Intersection under Restricted Oracles

Question

Is matroid intersection tractable if we only get the following information?

For each subset 𝑋 ⊆ 𝑆,

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not,

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋 ,

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋 , or

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋 .

32

MAX is too weak as it gives no information on the second matroid

if the first matroid is free, i.e., 𝑟1 𝑋 = 𝑋 ∀𝑋 ⊆ 𝑆 . 

Obs.



Results and Open Problems

What we know (Results)

• Relation between Restricted Oracles

• SUM and CI+MAX can solve Weighted in general

• MIN can solve Unweighted in general, and Weighted in some cases

• CI can solve Unweighted/Weighted in some cases

What we want to know (Open)

• Can MIN solve Weighted in general? Or, is it hard?

• Can CI solve Unweighted/Weighted in general? Or, is it hard?

33

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋



[Result 1] Relation between Restricted Oracles
34

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋

MIN+SUM, MIN+MAX, SUM+MAX

MIN SUM

MAXCI

CI+MAX

Separate Oracles (usual)

Difficult

Easy Tractable

• A ⇝ B (reachable) means
the oracle B is always emulated
by using the oracle A

• A ⇝ B (unreachable) means
∃matroid intersection instances
s.t. B can distinguish them

but A cannot

/



[Result 2] Unweighted Matroid Intersection
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MIN+SUM, MIN+MAX, SUM+MAX

MIN SUM

MAXCI

CI+MAX

Separate Oracles (usual)

Difficult

Easy

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋

Tractable

[Bárász
2006]

CI is tractable if one matroid is

• a partition matroid, or

• an elementary split matroid.
Generalization of
paving matroid

[Joswig–Schröter 2017;  BKSYY 2023]



[Result 3] Weighted Matroid Intersection
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MIN+SUM, MIN+MAX, SUM+MAX

MIN SUM

MAXCI

CI+MAX

Separate Oracles (usual)

Difficult

Easy

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋

Tractable

MIN is tractable if

• every circuit in one matroid
is small (FPT), or

• no pair of circuits s.t.
one includes the other.

CI is tractable if one matroid is
an elementary split matroid.
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𝐌: Matroid on a ground set 𝑆

• ℐ ⊆ 2𝑆: Independent set family

• ℬ ⊆ 2𝑆: Base (Basis) family

• 𝒞 ⊆ 2𝑆: Circuit family

• 𝑟: 2𝑆 → 𝐙≥0, Rank function;  𝑟 𝑋 ≔ max 𝑌 𝑌 ⊆ 𝑋, 𝑌 ∈ ℐ

• cl: 2𝑆 → 2𝑆, Closure operator;  cl 𝑋 ≔ 𝑒 ∈ 𝑆 𝑟 𝑋 ∪ 𝑒 = 𝑟 𝑋

Matroid (Notation)
38



Elementary Split Matroid

Generalized

→

[BKSYY 2023]

• Partition Matroid

𝑆 = 𝑆1 ⊎ 𝑆2 ⊎ ⋯⊎ 𝑆𝑘 , ℐ = 𝑌 ⊆ 𝑆 𝑌 ∩ 𝑆𝑖 ≤ 1 ∀𝑖 ∈ 𝑘

• Cycle Matroid (Graphic Matroid)

𝐺 = 𝑉, 𝐸 : undirected graph

𝑆 = 𝐸, ℐ = 𝑌 ⊆ 𝑆 𝑌 forms a forest (contains no cycle)

• Paving Matroid

◦ Nearly Uniform: ∀𝐶 ∈ 𝒞, 𝑟 𝑆 ≤ 𝐶 ≤ 𝑟 𝑆 + 1

◦ Hypergraph Representation:  ∃𝑟 ∈ 𝐙>0, ∃ℋ ⊆
𝑆
≥ 𝑟

,

𝐻1 ∩ 𝐻2 ≤ 𝑟 − 2 ∀𝐻1, 𝐻2 ∈ ℋ ,

ℬ = 𝑌 ⊆ 𝑆 𝑌 = 𝑟, 𝑌 ⊈ 𝐻 ∀𝐻 ∈ ℋ

Matroid (Examples)
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• Partition Matroid

𝑆 = 𝑆1 ⊎ 𝑆2 ⊎ ⋯⊎ 𝑆𝑘 , ℐ = 𝑌 ⊆ 𝑆 𝑌 ∩ 𝑆𝑖 ≤ 1 ∀𝑖 ∈ 𝑘

• Cycle Matroid (Graphic Matroid)

𝐺 = 𝑉, 𝐸 : undirected graph

𝑆 = 𝐸, ℐ = 𝑌 ⊆ 𝑆 𝑌 forms a forest (contains no cycle)

• Paving Matroid

◦ Nearly Uniform: ∀𝐶 ∈ 𝒞, 𝑟 𝑆 ≤ 𝐶 ≤ 𝑟 𝑆 + 1

◦ Hypergraph Representation:  ∃𝑟 ∈ 𝐙>0, ∃ℋ ⊆
𝑆
≥ 𝑟

,

𝐻1 ∩ 𝐻2 ≤ 𝑟 − 2 ∀𝐻1, 𝐻2 ∈ ℋ ,

ℬ = 𝑌 ⊆ 𝑆 𝑌 = 𝑟, 𝑌 ⊈ 𝐻 ∀𝐻 ∈ ℋ

Matroid (Examples)
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• Partition Matroid

𝑆 = 𝑆1 ⊎ 𝑆2 ⊎ ⋯⊎ 𝑆𝑘 , ℐ = 𝑌 ⊆ 𝑆 𝑌 ∩ 𝑆𝑖 ≤ 1 ∀𝑖 ∈ 𝑘

• Cycle Matroid (Graphic Matroid)

𝐺 = 𝑉, 𝐸 : undirected graph

𝑆 = 𝐸, ℐ = 𝑌 ⊆ 𝑆 𝑌 forms a forest (contains no cycle)

• Paving Matroid

◦ Nearly Uniform: ∀𝐶 ∈ 𝒞, 𝑟 𝑆 ≤ 𝐶 ≤ 𝑟 𝑆 + 1

◦ Hypergraph Representation:  ∃𝑟 ∈ 𝐙>0, ∃ℋ ⊆
𝑆
≥ 𝑟

,

𝐻1 ∩ 𝐻2 ≤ 𝑟 − 2 ∀𝐻1, 𝐻2 ∈ ℋ ,

ℬ = 𝑌 ⊆ 𝑆 𝑌 = 𝑟, 𝑌 ⊈ 𝐻 ∀𝐻 ∈ ℋ

Matroid (Examples)
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Matroid Intersection Problem (Unweighted)
42

Input: 𝑆: Finite set,  𝐌1, 𝐌2: Matroids on 𝑆 (oracle)

Goal:  maximize 𝑌 subject to 𝑌 ∈ ℐ1 ∩ ℐ2

• Usually, separate oracles are given, i.e.,
we can ask for each subset 𝑋 ⊆ 𝑆 and each 𝑖 = 1, 2,
whether 𝑋 ∈ ℐ𝑖 or not, the rank 𝑟𝑖 𝑋 , etc.

• Many Applications (Special Cases)

◦ Bipartite matching: Partition + Partition

◦ Arborescence (packing): Partition + Graphic (unions)

◦ Dijoin: Partition + Crossing Submodular Function [Frank–Tardos 1981]



Matroid Intersection Problem (Weighted)
43

Input: 𝑆: Finite set,  𝐌1, 𝐌2: Matroids on 𝑆 (oracle),  𝑤: 𝑆 → 𝐑

Goal:  maximize 𝑤 𝑌 subject to 𝑌 ∈ ℐ1 ∩ ℐ2 (and 𝑌 = 𝑘 for each 𝑘 )

• Usually, separate oracles are given, i.e.,
we can ask for each subset 𝑋 ⊆ 𝑆 and each 𝑖 = 1, 2,
whether 𝑋 ∈ ℐ𝑖 or not, the rank 𝑟𝑖 𝑋 , etc.

• Many Applications (Special Cases)

◦ Bipartite matching: Partition + Partition

◦ Arborescence (packing): Partition + Graphic (unions)

◦ Dijoin: Partition + Crossing Submodular Function [Frank–Tardos 1981]



Matroid Intersection Problem (Weighted)
44

Input: 𝑆: Finite set,  𝐌1, 𝐌2: Matroids on 𝑆 (oracle),  𝑤: 𝑆 → 𝐑

Goal:  maximize 𝑤 𝑌 subject to 𝑌 ∈ ℐ1 ∩ ℐ2 (and 𝑌 = 𝑘 for each 𝑘 )

• Usually, separate oracles are given, i.e.,
we can ask for each subset 𝑋 ⊆ 𝑆 and each 𝑖 = 1, 2,
whether 𝑋 ∈ ℐ𝑖 or not, the rank 𝑟𝑖 𝑋 , etc.

• The goal of this study is to clarify what happens if the oracle is restricted:

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not,

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋 , or

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋 .



“Matroid Intersection is Tractable”
45

Most of them require
separate information
of two matroids

𝑌

𝑃

Basic Strategy of Efficient Algorithms

• Starting with 𝑌 = ∅, repeatedly update the current solution 𝑌.

• For each update,

◦ construct the exchangeability graph w.r.t. 𝑌,

◦ find an augmenting path 𝑃 in the graph, and

◦ flip the current solution along the path, i.e., 𝑌 ← 𝑌 △ 𝑃.

• The edges in the graph are oriented according to
in which matroid the two elements are exchangeable.

Assumption: Independence in each matroid can be tested.



Exchangeability Graph
46

𝑌

Def.

• 𝐴 𝑌 = 𝐴1 𝑌 ∪ 𝐴2 𝑌 , where

◦ 𝐴1 𝑌 ≔ 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1
◦ 𝐴2 𝑌 ≔ 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

• 𝑆1 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ1 (Sources) 

• 𝑆2 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ2 (Sinks)

⟺ d
ef

𝑦𝑥

𝑃

𝑆1

𝑆2

𝐌1, 𝐌2: Matroids on a common ground set 𝑆,  𝑌 ∈ ℐ1 ∩ ℐ2
𝐷 𝑌 = 𝑆 ∖ 𝑌, 𝑌; 𝐴 𝑌 : Exchangeability Graph w.r.t. 𝑌



Augmentability (Unweighted)
47

𝐌1, 𝐌2: Matroids on a common ground set 𝑆,  𝑌 ∈ ℐ1 ∩ ℐ2
𝐷 𝑌 = 𝑆 ∖ 𝑌, 𝑌; 𝐴 𝑌 : Exchangeability Graph w.r.t. 𝑌

• If 𝐷 𝑌 has no 𝑆1–𝑆2 path, then 𝑌 is maximum.

• If 𝑃 is a shortest 𝑆1–𝑆2 path in 𝐷 𝑌 , then 𝑌 △ 𝑃 ∈ ℐ1 ∩ ℐ2. 𝑌

Thm.
𝑆1

𝑆2
𝑃

O 𝑛𝑟2 time in total, where 𝑟 ≔ opt. value ≤ 𝑛

• 𝐷 𝑌 is constructed by O 𝑛𝑟 oracle calls

• 𝑃 is found by BFS in linear time ( 𝑛 vertices, O 𝑛𝑟 edges)

• #(iteration) is 𝑟 + 1



Augmentability (Weighted)
48

𝐌1, 𝐌2: Matroids on a common ground set 𝑆

𝑌 ∈ argmax 𝑤 𝑋 𝑋 ∈ ℐ1
𝑘
∩ ℐ2

𝑘
𝑘 = 𝑌

𝐷 𝑌 = 𝑆 ∖ 𝑌, 𝑌; 𝐴 𝑌 : Exchangeability Graph w.r.t. 𝑌

cost 𝑃 ≔ 𝑤 𝑃 ∩ 𝑌 − 𝑤 𝑃 ∖ 𝑌 𝑃: Τpath cycle

• 𝐷 𝑌 has no negative-cost cycle.

• If 𝑃 is a shortest cheapest 𝑆1–𝑆2 path in 𝐷 𝑌 ,

then 𝑌 △ 𝑃 ∈ argmax 𝑤 𝑋 𝑋 ∈ ℐ1
𝑘+1

∩ ℐ2
𝑘+1

.

𝑌

Thm.
𝑆1

𝑆2
𝑃

O 𝑛2𝑟2 time in total (Bellman–Ford, Weight Splitting, etc.)



Outline
• Overview: Question and Results

• Matroid Intersection (Basics)

◦ Matroid and Matroid Intersection

◦ Augmenting-Path Algorithms and Exchangeability Graph

• Matroid Intersection under Restricted Oracles

◦ First Step: What can be done in general by Common Independence Oracle

◦ Results on Each Restricted Oracle

• Matroid Intersection under Minimum Rank Oracle

◦ How to Solve Unweighted Problem

◦ Results on Weighted Problem
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Exchangeability Graph via Restricted Oracles
50

𝑌

Def.

⟺ d
ef

𝑦𝑥

𝑃

𝑆1

𝑆2

𝐌1, 𝐌2: Matroids on a common ground set 𝑆,  𝑌 ∈ ℐ1 ∩ ℐ2
𝐷 𝑌 = 𝑆 ∖ 𝑌, 𝑌; 𝐴 𝑌 : Exchangeability Graph w.r.t. 𝑌

• 𝐴 𝑌 = 𝐴1 𝑌 ∪ 𝐴2 𝑌 , where

◦ 𝐴1 𝑌 ≔ 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1
◦ 𝐴2 𝑌 ≔ 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

• 𝑆1 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ1 (Sources) 

• 𝑆2 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ2 (Sinks)



Sources and Sinks via Restricted Oracles
51

𝑆𝑖 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

• 𝑟 ∈ 𝑆1 ∩ 𝑆2 ⟺ 𝑌 + 𝑟 ∈ ℐ1 ∩ ℐ2
This can be recognized by CI, and hence by MIN or SUM.

• 𝑠 ∈ 𝑆1 ∖ 𝑆2, 𝑡 ∈ 𝑆2 ∖ 𝑆1 ⟺

◦ 𝑟1 𝑌 + 𝑠 = 𝑌 + 1, 𝑟2 𝑌 + 𝑠 = 𝑌

◦ 𝑟1 𝑌 + 𝑡 = 𝑌 , 𝑟2 𝑌 + 𝑡 = 𝑌 + 1

◦ 𝑟1 𝑌 + 𝑠 + 𝑡 = 𝑌 + 1, 𝑟2 𝑌 + 𝑠 + 𝑡 = 𝑌 + 1

This can be recognized (up to symmetry) by MIN.

Even in the SUM or CI case, we can try all possible pairs.

𝑆2

𝑟
𝑆1

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋



𝑟

Sources and Sinks via Restricted Oracles
52

𝑆𝑖 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

• 𝑟 ∈ 𝑆1 ∩ 𝑆2 ⟺ 𝑌 + 𝑟 ∈ ℐ1 ∩ ℐ2
This can be recognized by CI, and hence by MIN or SUM.

• 𝑠 ∈ 𝑆1 ∖ 𝑆2, 𝑡 ∈ 𝑆2 ∖ 𝑆1 ⟺

◦ 𝑟1 𝑌 + 𝑠 = 𝑌 + 1, 𝑟2 𝑌 + 𝑠 = 𝑌

◦ 𝑟1 𝑌 + 𝑡 = 𝑌 , 𝑟2 𝑌 + 𝑡 = 𝑌 + 1

◦ 𝑟1 𝑌 + 𝑠 + 𝑡 = 𝑌 + 1, 𝑟2 𝑌 + 𝑠 + 𝑡 = 𝑌 + 1

This can be recognized (up to symmetry) by MIN.

Even in the SUM or CI case, we can try all possible pairs.

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

𝑆1

𝑆2
𝑠

𝑡

𝑆3−𝑖

𝑆𝑖



Exchangeability Graph via Restricted Oracles
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𝑌

Def.

⟺ d
ef

𝑦𝑥

𝑃

𝑆1

𝑆2

𝐌1, 𝐌2: Matroids on a common ground set 𝑆,  𝑌 ∈ ℐ1 ∩ ℐ2
𝐷 𝑌 = 𝑆 ∖ 𝑌, 𝑌; 𝐴 𝑌 : Exchangeability Graph w.r.t. 𝑌

• 𝐴 𝑌 = 𝐴1 𝑌 ∪ 𝐴2 𝑌 , where

◦ 𝐴1 𝑌 ≔ 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1
◦ 𝐴2 𝑌 ≔ 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

✓ 𝑆1 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ1 (Sources) 

✓ 𝑆2 ≔ 𝑥 𝑌 + 𝑥 ∈ ℐ2 (Sinks)



Exchange Edges via Restricted Oracles
54

𝐴1 𝑌 ≔ 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1
𝐴2 𝑌 ≔ 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

• 𝑦, 𝑥 ∈ 𝐴1 𝑌 , 𝑥, 𝑦 ∈ 𝐴2 𝑌

⟺ 𝑌 − 𝑦 + 𝑥 ∈ ℐ1 ∩ ℐ2
This can be recognized by CI, and hence by MIN or SUM.

• Difficult to recognize edges in one direction…

◦ SUM (or CI+MAX) is strong enough to emulate Bellman–Ford (Weighted)

◦ MIN can emulate BFS (Unweighted), and it is somewhat extendable

◦ CI only solves some special cases, and seems too weak in general (???)

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

𝑦𝑥



Exchange Edges via Restricted Oracles
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𝐴1 𝑌 ≔ 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1
𝐴2 𝑌 ≔ 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

• 𝑦, 𝑥 ∈ 𝐴1 𝑌 , 𝑥, 𝑦 ∈ 𝐴2 𝑌

⟺ 𝑌 − 𝑦 + 𝑥 ∈ ℐ1 ∩ ℐ2
This can be recognized by CI, and hence by MIN or SUM.

• Difficult to recognize edges in one direction…

◦ SUM (or CI+MAX) is strong enough to emulate Bellman–Ford (Weighted)

◦ MIN can emulate BFS (Unweighted), and it is somewhat extendable

◦ CI only solves some special cases, and seems too weak in general (???)

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

𝑦𝑥



Outline
• Overview: Question and Results

• Matroid Intersection (Basics)

◦ Matroid and Matroid Intersection

◦ Augmenting-Path Algorithms and Exchangeability Graph

• Matroid Intersection under Restricted Oracles

◦ First Step: What can be done in general by Common Independence Oracle

◦ Results on Each Restricted Oracle

• Matroid Intersection under Minimum Rank Oracle

◦ How to Solve Unweighted Problem

◦ Results on Weighted Problem
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Unweighted Matroid Intersection via MIN
57

Emulate a usual algorithm on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

→ None of such fake edges is used in a shortest path!

[Bárász 2006]

𝑌 ∈ ℐ1 ∩ ℐ2,  𝐷 𝑌 : Exchangeability Graph w.r.t. 𝑌

• If 𝐷 𝑌 has no 𝑆1–𝑆2 path, then 𝑌 is maximum.

• If 𝑃 is a shortest 𝑆1–𝑆2 path in 𝐷 𝑌 , then 𝑌 △ 𝑃 ∈ ℐ1 ∩ ℐ2.

Thm.



Unweighted Matroid Intersection via MIN
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Emulate a usual algorithm on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

→ None of such fake edges is used in a shortest path!

[Bárász 2006]

𝑌 ∈ ℐ1 ∩ ℐ2,  𝐷 𝑌 : Exchangeability Graph w.r.t. 𝑌

• If 𝐷 𝑌 has no 𝑆1–𝑆2 path, then 𝑌 is maximum.

• If 𝑃 is a shortest 𝑆1–𝑆2 path in 𝐷 𝑌 , then 𝑌 △ 𝑃 ∈ ℐ1 ∩ ℐ2.

Thm.



Overestimation of 𝐴 𝑌 via MIN (Unweighted)
59

Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• ∀𝑦 ∈ 𝑌,

◦ 𝑦, 𝑡 ∈ 𝐴1 𝑌 ⟺ 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑡 = 𝑌

◦ 𝑠, 𝑦 ∈ 𝐴2 𝑌 ⟺ 𝑟2 𝑌 − 𝑦 + 𝑡 = 𝑌 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑠 = 𝑌

• Suppose that ∀𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , ∀𝑦 ∈ 𝑌,

◦ Estimate ∃ 𝑦, 𝑥 ⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

◦ Estimate ∃ 𝑥, 𝑦 ⟺ 𝑥, 𝑦 ∈ 𝐴2 𝑌 or 𝑠, 𝑦 ∈ 𝐴2 𝑌

Enough to find a shortest path!  (Wrong  ⟹ ∃Shortcut)

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑡

𝑠

𝑌

𝑆1

𝑆2



Overestimation of 𝐴 𝑌 via MIN (Unweighted)
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Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• ∀𝑦 ∈ 𝑌,

◦ 𝑦, 𝑡 ∈ 𝐴1 𝑌 ⟺ 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑡 = 𝑌

◦ 𝑠, 𝑦 ∈ 𝐴2 𝑌 ⟺ 𝑟2 𝑌 − 𝑦 + 𝑡 = 𝑌 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑠 = 𝑌

• Suppose that ∀𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , ∀𝑦 ∈ 𝑌,

◦ Estimate ∃ 𝑦, 𝑥 ⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

◦ Estimate ∃ 𝑥, 𝑦 ⟺ 𝑥, 𝑦 ∈ 𝐴2 𝑌 or 𝑠, 𝑦 ∈ 𝐴2 𝑌

Enough to find a shortest path!  (Wrong  ⟹ ∃Shortcut)

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑦𝑥

𝑡

𝑠

∃

∃

𝑆1

𝑆2
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Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• ∀𝑦 ∈ 𝑌,

◦ 𝑦, 𝑡 ∈ 𝐴1 𝑌 ⟺ 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑡 = 𝑌

◦ 𝑠, 𝑦 ∈ 𝐴2 𝑌 ⟺ 𝑟2 𝑌 − 𝑦 + 𝑡 = 𝑌 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑠 = 𝑌

• Suppose that ∀𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , ∀𝑦 ∈ 𝑌,

◦ Estimate ∃ 𝑦, 𝑥 ⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

◦ Estimate ∃ 𝑥, 𝑦 ⟺ 𝑥, 𝑦 ∈ 𝐴2 𝑌 or 𝑠, 𝑦 ∈ 𝐴2 𝑌

Enough to find a shortest path!  (Wrong  ⟹ ∃Shortcut)

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑦𝑥

𝑡

𝑠

∃

∃

𝑆1

𝑆2
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Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• Estimate ∃ 𝑦, 𝑥 𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , 𝑦 ∈ 𝑌

⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 = 𝑌 or 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑦𝑥

𝑡

∃

𝑆2
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Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• Estimate ∃ 𝑦, 𝑥 𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , 𝑦 ∈ 𝑌

⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 = 𝑌 or 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 + 𝑡 = 𝑌

𝑌 = 𝑟1 𝑌𝑥𝑡 ≥ 𝑟1 𝑌𝑥𝑡 − 𝑦 ≥ max 𝑟1 𝑌𝑥 − 𝑦 , 𝑟1 𝑌𝑡 − 𝑦

𝑟1 𝑌𝑥 − 𝑦 + 𝑟1 𝑌𝑡 − 𝑦 ≥ 𝑟1 𝑌𝑥𝑡 − 𝑦 + 𝑟1 𝑌 − 𝑦

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑌𝑥𝑡 ≔ 𝑌 + 𝑥 + 𝑡
𝑌𝑥 ≔ 𝑌 + 𝑥
𝑌𝑡 ≔ 𝑌 + 𝑡

𝑥, 𝑡 ∈ 𝑆 ∖ 𝑆1 = cl1 𝑌

= 𝑌 − 1

𝑦𝑥

𝑡

∃

𝑆2
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Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• Estimate ∃ 𝑦, 𝑥 𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , 𝑦 ∈ 𝑌

⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 = 𝑌 or 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 + 𝑡 = 𝑌

⟺ 𝑟min 𝑌 − 𝑦 + 𝑥 + 𝑡 = 𝑌

𝑟2 𝑌 − 𝑦 + 𝑥 + 𝑡 ≥ 𝑟2 𝑌 + 𝑡 − 1 = 𝑌

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑦𝑥

𝑡

∃

𝑆2
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Assume 𝑆1 ∩ 𝑆2 = ∅, 𝑠 ∈ 𝑆1, 𝑡 ∈ 𝑆2

• 𝑌 + 𝑠 ∈ ℐ1 ∖ ℐ2, 𝑌 + 𝑡 ∈ ℐ2 ∖ ℐ1

• Estimate ∃ 𝑦, 𝑥 𝑥 ∈ 𝑆 ∖ 𝑌 ∪ 𝑆1 ∪ 𝑆2 , 𝑦 ∈ 𝑌

⟺ 𝑦, 𝑥 ∈ 𝐴1 𝑌 or 𝑦, 𝑡 ∈ 𝐴1 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 = 𝑌 or 𝑟1 𝑌 − 𝑦 + 𝑡 = 𝑌

⟺ 𝑟1 𝑌 − 𝑦 + 𝑥 + 𝑡 = 𝑌

⟺ 𝑟min 𝑌 − 𝑦 + 𝑥 + 𝑡 = 𝑌

• Estimate ∃ 𝑥, 𝑦 ⟺ 𝑟min 𝑌 − 𝑦 + 𝑥 + 𝑠 = 𝑌

𝑆𝑖 = 𝑥 𝑌 + 𝑥 ∈ ℐ𝑖 𝑖 = 1, 2

𝐴1 𝑌 = 𝑦, 𝑥 𝑌 − 𝑦 + 𝑥 ∈ ℐ1

𝐴2 𝑌 = 𝑥, 𝑦 𝑌 − 𝑦 + 𝑥 ∈ ℐ2

𝑦𝑥

𝑡

∃

𝑠

∃
𝑦𝑥

𝑆1

𝑆2
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Emulate a usual algorithm on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

→ None of such fake edges is used in a shortest path!

[Bárász 2006]

𝑌 ∈ ℐ1 ∩ ℐ2,  𝐷 𝑌 : Exchangeability Graph w.r.t. 𝑌

• If 𝐷 𝑌 has no 𝑆1–𝑆2 path, then 𝑌 is maximum.

• If 𝑃 is a shortest 𝑆1–𝑆2 path in 𝐷 𝑌 , then 𝑌 △ 𝑃 ∈ ℐ1 ∩ ℐ2.

Thm.
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Emulate a usual algorithm on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

→ None of such fake edges is used in a shortest path!

• When the algorithm halts, a dual optimal solution is found by reachability.

[Bárász 2006]

max 𝑌 𝑌 ∈ ℐ1 ∩ ℐ2 = min 𝑟min 𝑍 + 𝑟min 𝑆 ∖ 𝑍 𝑍 ⊆ 𝑆Thm.

𝑌 = 𝑟min 𝑌 ∩ 𝑍 + 𝑟min 𝑌 ∖ 𝑍 ≤ 𝑟min 𝑍 + 𝑟min 𝑆 ∖ 𝑍 ≤ 𝑟1 𝑍 + 𝑟2 𝑆 ∖ 𝑍
= 𝑌 ∩ 𝑍 = 𝑌 ∖ 𝑍



Weighted Matroid Intersection via MIN
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Try to emulate usual algorithms on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

◦ Such fake edges may be used in a (shortest) cheapest path!

◦ They may cause negative-cost cycles! (NP-hard!?)

[BBKYY 2023+]

Thm. 𝑌 ∈ ℐ1
𝑘
∩ ℐ2

𝑘
: Max-Weight,  cost 𝑃 ≔ 𝑤 𝑃 ∩ 𝑌 − 𝑤 𝑃 ∖ 𝑌 𝑃: Τpath cycle

• 𝐷 𝑌 has no negative-cost cycle.

• If 𝑃 is a shortest cheapest 𝑆1–𝑆2 path in 𝐷 𝑌 , then 𝑌 △ 𝑃 ∈ ℐ1
𝑘+1

∩ ℐ2
𝑘+1

is max-weight.
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Try to emulate usual algorithms on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

◦ Such fake edges may be used in a (shortest) cheapest path!

◦ They may cause negative-cost cycles!  (NP-hard!?)

[BBKYY 2023+]

Thm. 𝑌 ∈ ℐ1
𝑘
∩ ℐ2

𝑘
: Max-Weight,  cost 𝑃 ≔ 𝑤 𝑃 ∩ 𝑌 − 𝑤 𝑃 ∖ 𝑌 𝑃: Τpath cycle

• 𝐷 𝑌 has no negative-cost cycle.

• If 𝑃 is a shortest cheapest 𝑆1–𝑆2 path in 𝐷 𝑌 , then 𝑌 △ 𝑃 ∈ ℐ1
𝑘+1

∩ ℐ2
𝑘+1

is max-weight.
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Try to emulate usual algorithms on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

◦ Such fake edges may be used in a (shortest) cheapest path!

◦ They may cause negative-cost cycles!  (NP-hard!?)

• Extra information from at most two-by-two exchanges may refine the graph!

• Any graph consistent with all the extra information is suitable for emulation!!

• Finding a consistent graph is NP-hard… (4-coloring of 3-colorable graphs)

[BBKYY 2023+]



or

or

Extra Info. from Two-by-Two Exchange
71

Extra information from at most two-by-two exchanges may refine the graph!

• 𝑟min 𝑌 − 𝑦 + 𝑥 = 𝑌 ⟺

• Otherwise,

◦ 𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥 = 𝑌 − 1 ⟺ or

◦ 𝑟min 𝑌 − 𝑦 + 𝑥1 + 𝑥2 = 𝑌 ⟺ or

• Otherwise (none of the above holds),

𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥1 + 𝑥2 = 𝑌 − 1 ⟺ or 

[BBKYY 2023+]
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or
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Extra information from at most two-by-two exchanges may refine the graph!

• 𝑟min 𝑌 − 𝑦 + 𝑥 = 𝑌 ⟺

• Otherwise,

◦ 𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥 = 𝑌 − 1 ⟺ or

◦ 𝑟min 𝑌 − 𝑦 + 𝑥1 + 𝑥2 = 𝑌 ⟺ or

• Otherwise (none of the above holds),

𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥1 + 𝑥2 = 𝑌 − 1 ⟺ or 

[BBKYY 2023+]
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Extra information from at most two-by-two exchanges may refine the graph!

• 𝑟min 𝑌 − 𝑦 + 𝑥 = 𝑌 ⟺

• Otherwise,

◦ 𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥 = 𝑌 − 1 ⟺ or

◦ 𝑟min 𝑌 − 𝑦 + 𝑥1 + 𝑥2 = 𝑌 ⟺ or

• Otherwise (none of the above holds),

𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥1 + 𝑥2 = 𝑌 − 1 ⟺ or 

[BBKYY 2023+]
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Try to emulate usual algorithms on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

◦ Such fake edges may be used in a (shortest) cheapest path!

◦ They may cause negative-cost cycles!  (NP-hard!?)

• Extra information from at most two-by-two exchanges may refine the graph!

• Any graph consistent with all the extra information is suitable for emulation!!

• Finding a consistent graph is NP-hard… (4-coloring of 3-colorable graphs)

[BBKYY 2023+]



Consistency with Extra Info. is Enough
75

Any graph consistent with all the extra information is suitable for emulation!!

[BBKYY 2023+]

𝑌 ∈ argmax 𝑤 𝑋 𝑋 ∈ ℐ1
𝑘
∩ ℐ2

𝑘
𝑘 = 𝑌

𝐷 𝑌 : Exchangeability Graph w.r.t. 𝑌

෩𝐷 𝑌 : Subgraph of the overestimation consistent with all the extra info.

cost 𝑃 ≔ 𝑤 𝑃 ∩ 𝑌 − 𝑤 𝑃 ∖ 𝑌 𝑃: Τpath cycle

• ෩𝐷 𝑌 has no negative-cost cycle.

• ∀ ෨𝑃: shortest cheapest 𝑆1–𝑆2 path in ෩𝐷 𝑌 ,
∃𝑃: shortest cheapest 𝑆1–𝑆2 path in 𝐷 𝑌 with the same vertex set,
and vice versa.

Thm.
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Try to emulate usual algorithms on the Overestimated Exchangeability Graph

• Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

• Other edges are overestimated so that
if an edge 𝑒 is wrongly estimated, there is a correct shortcut skipping 𝑒.

◦ Such fake edges may be used in a (shortest) cheapest path!

◦ They may cause negative-cost cycles!  (NP-hard!?)

• Extra information from at most two-by-two exchanges may refine the graph!

• Any graph consistent with all the extra information is suitable for emulation!!

• Finding a consistent graph is NP-hard… (4-coloring of 3-colorable graphs)

[BBKYY 2023+]



Tractable cases of WMI via MIN
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• When ∀𝐶1 ∈ 𝒞1, ∀𝐶2 ∈ 𝒞2, 𝐶1 ⊈ 𝐶2 and 𝐶2 ⊈ 𝐶1
→ Finding a consistent graph is reduced to 2-SAT

• When ∃𝑖 ∈ 1, 2 , ∀𝐶 ∈ 𝒞𝑖 , 𝐶 ≤ 𝑘

→ O 2𝑘 ⋅ poly 𝑛 time by 2-SAT + Brute-Force Guess

• Lexicographical Maximization

◦ Max. #(heaviest); Sub. to this, Max. #(second heaviest); and so on

◦ Update with preserving the numbers of heavier elements can be done
via Underestimation of the Exchangeability Graph (by 2-SAT)

◦ Approximation with factor 2 or better for the original problem [BKYY 2022]

[BBKYY 2023+]



Extra Info. from Two-by-Two Exchange
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Extra information from at most two-by-two exchanges may refine the graph!

• 𝑟min 𝑌 − 𝑦 + 𝑥 = 𝑌 ⟺

• Otherwise,

◦ 𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥 = 𝑌 − 1 ⟺ or

◦ 𝑟min 𝑌 − 𝑦 + 𝑥1 + 𝑥2 = 𝑌 ⟺ or

• Otherwise (none of the above holds),

𝑟min 𝑌 − 𝑦1 − 𝑦2 + 𝑥1 + 𝑥2 = 𝑌 − 1 ⟺ or 

[BBKYY 2023+]
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Can represent 4-coloring (Hard)
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• When ∀𝐶1 ∈ 𝒞1, ∀𝐶2 ∈ 𝒞2, 𝐶1 ⊈ 𝐶2 and 𝐶2 ⊈ 𝐶1
→ Finding a consistent graph is reduced to 2-SAT

• When ∃𝑖 ∈ 1, 2 , ∀𝐶 ∈ 𝒞𝑖 , 𝐶 ≤ 𝑘

→ O 2𝑘 ⋅ poly 𝑛 time by 2-SAT + Brute-Force Guess

• Lexicographical Maximization

◦ Max. #(heaviest); Sub. to this, Max. #(second heaviest); and so on

◦ Update with preserving the numbers of heavier elements can be done
via Underestimation of the Exchangeability Graph (by 2-SAT)

◦ Approximation with factor 2 or better for the original problem [BKYY 2022]

[BBKYY 2023+]
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◦ Update with preserving the numbers of heavier elements can be done
via Underestimation of the Exchangeability Graph (by 2-SAT)
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Summary

Question

Is matroid intersection tractable if we only get the following information?

For each subset 𝑋 ⊆ 𝑆,

[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not,

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋 ,

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋 , or

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋 .
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MAX is too weak as it gives no information on the second matroid

if the first matroid is free, i.e., 𝑟1 𝑋 = 𝑋 ∀𝑋 ⊆ 𝑆 . 

Obs.



Summary

What we know (Results)

• Relation between Restricted Oracles

• SUM and CI+MAX can solve Weighted in general (Emulate Bellman–Ford)

• MIN can solve Unweighted in general, and Weighted in some cases

◦ No circuit inclusion (2-SAT)

◦ All circuits are small in one matroid (2-SAT + Brute-Force Guess, FPT)

◦ Lexicographical Maximization (2-SAT, 2- or better Approximation in general)

• CI can solve Unweighted/Weighted in some cases

◦ One is a partition matroid, Unweighted (Emulate BFS)

◦ One is an elementary split matroid, Weighted (Brute-Force)
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[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋



Summary

What we know (Results)

• Relation between Restricted Oracles

• SUM and CI+MAX can solve Weighted in general (Emulate Bellman–Ford)

• MIN can solve Unweighted in general, and Weighted in some cases

◦ No circuit inclusion (2-SAT)

◦ All circuits are small in one matroid (2-SAT + Brute-Force Guess, FPT)

◦ Lexicographical Maximization (2-SAT, 2- or better Approximation in general)

• CI can solve Unweighted/Weighted in some cases

◦ One is partition or chain (general upper bounds), Unweighted (Emulate BFS)

◦ One is an elementary split matroid, Weighted (Brute-Force)
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[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋



Summary

What we know (Results)

• Relation between Restricted Oracles

• SUM and CI+MAX can solve Weighted in general

• MIN can solve Unweighted in general, and Weighted in some cases

• CI can solve Unweighted/Weighted in some cases

What we want to know (Open)

• Can MIN solve Weighted in general? Or, is it hard?

• Can CI solve Unweighted/Weighted in general? Or, is it hard?
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[CI]  whether 𝑋 ∈ ℐ1 ∩ ℐ2 or not

[MIN]  𝑟min 𝑋 = min 𝑟1 𝑋 , 𝑟2 𝑋

[SUM]  𝑟sum 𝑋 = 𝑟1 𝑋 + 𝑟2 𝑋

[MAX]  𝑟max 𝑋 = max 𝑟1 𝑋 , 𝑟2 𝑋
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