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e Overview: Question and Results
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What is Matroid Intersection?
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What is Matroid Intersection?

The intersection of two matroids
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“Matroid Intersection is Tractable”

The intersection of two matroids

* Efficient Algorithms and Max-Min Theorems
o A maximum-cardinality common independent set
o A maximum-weight common independent set (of each cardinality)

e LP Formulation

o |ntersection of matroid polytopes = matroid intersection polytope
o Total dual integrality (TDI) and well-structured dual solution

* Many Applications (= Unified Framework)
Bipartite matching, Arborescence (packing), Dijoin, etc.
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“Matroid Intersection is Tractable”

Most of them require
separate information

* Efficient Algorithms and Max-Min Theorems

The intersection of two matroids

° A maximum-cardinality common independent set
o A maximum-weight common independent set (of each cardinality)

e LP Formulation

o |ntersection of matroid polytopes = matroid intersection polytope
o Total dual integrality (TDI) and well-structured dual solution

 Many Applications (= Unified Framework)
Bipartite matching, Arborescence (packing), Dijoin, etc.
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

What is known

 Efficient Algorithms rely on separate oracles for the two matroids

* Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Basic Strategy of Efficient Algorithms

e Starting with Y = @, repeatedly update the current solution Y.
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Basic Strategy of Efficient Algorithms

e Starting with Y = @, repeatedly update the current solution Y.

* For each update,
o construct the exchangeability graph w.r.t. Y, Y
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Basic Strategy of Efficient Algorithms

e Starting with Y = @, repeatedly update the current solution Y.

* For each update,

h<

o construct the exchangeability graph w.r.t. Y,
o find an augmenting path P in the graph, and p

O
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Basic Strategy of Efficient Algorithms

e Starting with Y = @, repeatedly update the current solution Y.

* For each update,

o construct the exchangeability graph w.r.t. Y, Y
o find an augmenting path P in the graph, and p
o flip the current solution along the path,i.e.,Y <« Y A P.

®

O
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Basic Strategy of Efficient Algorithms

e Starting with Y = @, repeatedly update the current solution Y.

* For each update,
o construct the exchangeability graph w.r.t. Y,
o find an augmenting path P in the graph, and p
o flip the current solution along the path,i.e.,Y <« Y A P.

* The edges in the graph are oriented according to
in which matroid the two elements are exchangeable.

Assumption: Independence in each matroid can be tested.



Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

r

Thm. [Edmonds 1970]

M;, M,: Matroids on a common ground set S
max{|Y||Y €I, NI, }=min{r(Z)+nE\NZ)|Z<S}

r

\.

Thm. [Frank 1981]

M., M,: Matroids on a common ground set S, w:S - R

max{w(Y) |y €719 n :72(")} (19 ={r e 5| IY| = k})

max wy(Y;) + max w; (Y,

v, €759 Y, €75 | Wi+ Ww; = W}

= min{
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

r

Thm. [Edmonds 1970]

M;, M,: Matroids on a common ground set S

max{ |Y] | YE} =min+ | Z €S}

r

\.

Thm. [Frank 1981]

M., M,: Matroids on a common ground set S, w:S - R

max{W(Y) ‘ Y E} (7].(") ={Yedg|ly|= k})
- minwﬂl) +w2 (2 |y 4w, = w)
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

LP-relaxation (Primal)

maximize Z w(e)x(e)

eEes

subject to Zx(e) <nZ) (ZcS)

ee’/

z x(e) <1,(2) (Z S $)

eez

x(e) =0 (e €5)

Determine the convex hull of

the common independent sets
[Edmonds 1970]
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

x(e) =0 (e €5) o . . ,
* wisinteger = 3y;: integer, optimal

Determine the convex hull of

the common independent sets
[Edmonds 1970]

* Jy/: optimal s.t. supp(y;’) is a chain
it S LipS G Lk

LP-relaxation (Primal) i Dual LP
maximize Y w(e)x(e) " minimize Y 122+ ) 1(2)y(2)
; : ZZS 1 1 ZZS 2 2
subject to z x(e) =n(Z2) (Z<S) i subject to Z(M(Z) +y,(2)) 2w(e) (e €9)
eez I Z>e
! y1(Z) =0 (Z<S)
;x(e)Srz(Z) (Z € 5) i D0 (zes
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

LP-relaxation (Primal) Dual LP

maximize Z w(e)x(e) minimize z Tmin(Z)y(Z)
e€s min{r; (Z),r,(Z)} 23

subject to Il subject to 2 y(Z) = w(e) (e€S)
D x(€) < Tinin(@) =

eEzZ (Z cS) y(Z) >0 (Z<YS)

x(e) =0 (e €5) . . :
* wisinteger = 3y™:integer, optimal
Determine the convex hull of

the common independent sets
[Edmonds 1970]

* Ay*: optimal s.t. supp(y™) is a chain
7, S 7, G S 7,
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Matroid Matching generalizes Matroid Intersection and Matching
7

Input: f:2° - Z.,, 2-polymatroid function (oracle) %
Goal: maximize |Y| subjectto f(Y) = 2|Y|andY C S

G=(,E), M
[Matroid Intersection] f =1,ym =11 + 1>

[Matching] f(F) =|V(F)| (F €S E =215)
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Matroid Matching generalizes Matroid Intersection and Matching

7
Input: f:2° - Z.,, 2-polymatroid function (oracle) %
Goal: maximize |Y| subjectto f(Y) = 2|Y|andY C S

G =(V,E), M

[Matroid Intersection] f =1,ym =11 + 1>
[Matching] f(F) =|V(F)| (F €S E =215)

* Matroid matching is hard in general
o Including NP-hard problems (e.g., Maximum Clique)

o |nstances for which exponentially many oracle calls are necessary
[Lovasz 1981; Jensen—Korte 1982]

* Tractable for linearly represented matroids [Lovasz 1980, 1981; ...]
[lwata—Kobayashi 2021; Pap 2013]
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

What is known

 Efficient Algorithms rely on separate oracles for the two matroids

* Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately



“Matroid Intersection is Tractable?”

What is known

 Efficient Algorithms rely on separate oracles for the two matroids

* Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately

What may be asked

* The resulting combinatorial structure is just J; N 7,

29



“Matroid Intersection is Tractable??”

What is known

 Efficient Algorithms rely on separate oracles for the two matroids

* Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately

What may be asked

* The resulting combinatorial structure is just J; N 7,

* The polytope is completely determined by 7., = min{ry,7,}
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“Matroid Intersection is Tractable???

What is known

 Efficient Algorithms rely on separate oracles for the two matroids

* Max-Min Theorems and the Polyhedral Description are given
by using the two rank functions separately

What may be asked

* The resulting combinatorial structure is just J; N 7,
* The polytope is completely determined by 7., = min{ry,7,}

* When it is seen as a special case of Matroid Matching,
the input should be 7, = 11 + 1, (oracle)

31



Matroid Intersection under Restricted Oracles

Question

Is matroid intersection tractable if we only get the following information?

For each subset X C S,

[ClI] whether X € J; N J, or not,
[MIN] 7iin (X) = min{r; (X), ,(X)},
[SUM] Tgum (X) = 11 (X) + 7, (X), or
[MAX] Tnax(X) = max{r;(X),r(X)}.

r

Obs. MAX is too weak as it gives no information on the second matroid
if the first matroid is free, i.e., 1 (X) = | X| (VX € 5).

~\
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RQSUltS and Open PrObIemS [CI] whether X € J; N J, or not

[MIN] rmin(X) = min{‘rl(X),’rz(X)}

What we know (Results) [SUM] Tum (X) = 11.(X) + 1o (X)
[MAX] Tinax(X) = max{ry (X), (XD}

* Relation between Restricted Oracles
* SUM and CI+MAX can solve Weighted in general
 MIN can solve Unweighted in general, and Weighted in some cases

* Cl can solve Unweighted/Weighted in some cases

What we want to know (Open)

e Can MIN solve Weighted in general? Or, is it hard?
e Can Cl solve Unweighted/Weighted in general? Or, is it hard?
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[Result 1] Relation between Restricted Oracles

A

Easy

Difficult [ClI] whether X € J; NJ, or not
[N”N] rmin(X) — min{rl(X),rz(X)}

[SUM] rsum(X) = rl(X) + TZ(X)
/ T \ T [MAX] 7inax(X) = max{r; (X),r,(X)}
[CI+I\/IAX] A -w B (reachable) means

the oracle B is always emulated
\ T / by using the oracle A
(MIN+SUM, MIN+MAX, SUM+MAX ] * 5 B unreachable) means
matroid intersection instances
s.t. B can distinguish them
~ but A cannot

¢/’[ Separate Oracles (usual)] AN
Tractable

—__--+-----
” ~~~
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[Result 2] Unweighted Matroid Intersection

[ClI] whether X € J; N J, or not

Difficult
A —----.-.~ - [MIN] Tigin (X) = min{ry (X), 7, (X))

,’ [SUM] rym(X) = 1 (X) + rp(X)
/4 [MAX] rmax(X) = max{rl(X),rz(X)}
|
]
I MIN I+MAX Cl is tractable if one matroid is
§ (Barasz v o.a partition matroid, or
I 2006] \
: “ * an elementary split matroid.
I [ MIN+SUM, MIN+MAX, SUM+MAX | Generalization of
[ | paving matroid
: ________ 1‘ _________ = [Joswig—Schréter 2017; BKSYY 2023]
Pt ~ S~ I
L [Separate Oracles (usual)] “Tractable
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[Result 3] Weighted Matroid Intersection
Difficult [ClI] whether X € J; N J, or not
A ._ - [N”N] rmin(X) = min{rl(X),rz(X)}
[SUM] rsum(X) = rl(X) + TZ(X)
/ T \\'r [MAX] 7inax(X) = max{r; (X),r,(X)}
- [CI+I\/IAX MIN is tractable if
\‘ e every circuit in one matroid
'I \ T / is small (FPT), or

no pair of circuits s.t.

\
, \
I{ MIN+SUM, MIN+MAX, SUM+MAX | | oneincludes the other
i
i

I
'l _______ 1‘ _______ Cl is tractable if one matroid is
1 BRIy | an elementary split matroid.
L [Se arate Oracles (usual ] "

Easy P ( ) Tractable




Outline

* Matroid Intersection (Basics)
o Matroid and Matroid Intersection
o Augmenting-Path Algorithms and Exchangeability Graph
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Matroid (Notation)

M: Matroid on a ground set S

« 7 C 2°: Independent set family

« B C 2°: Base (Basis) family

e C C 2°: Circuit family

e 1:2% > Z.,, Rank function; 7(X) :=max{|Y||Y S X, Y€ T}

e cl: 2% — 25, Closure operator; cl(X) ={eeS|r(Xu{e}) =r(X)}

38



Matroid (Examples)

e Partition Matroid
S=85SUSW--uS, I={YCSS||YnS;|<1(Vie€Elk

e Cycle Matroid (Graphic Matroid)
G = (V,E): undirected graph
S=E,J={Y €S |Y forms a forest (contains no cycle) }

39
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Matroid (Examples)

e Partition Matroid
S=85SUSW--uS, I={YCSS||YnS;|<1(Vie€Elk

. Cycle Matroid (Graphic Matroid)
= (V, E): undirected graph
S=E,J={Y €S |Y forms a forest (contains no cycle) }

* Paving Matroid r(S) r(S) — 1

o Nearly Uniform: VC € C, r(S) < |C| < r(S) + 1
o Hypergraph Representation: 3r € Z-y, 3H C
|H1 ﬂ H2| < r — 2 (VH]_,HZ E \7'[)
B={YCSI||Y|=r, YEH(NHEXH)}
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Matroid (Examples)

S2 53
e Partition Matroid
S=85SUSW--uS, I={YCSS||YnS;|<1(Vie€Elk

. Cycle Matroid (Graphic Matroid)
= (V, E): undirected graph
S=E, 7J={Y €S |Y forms a forest (contains no cycle) }

* Paving Matroid r(S)

r(S) —1

o Nearly Uniform: VC € C, r(S) < |C| < r(S) + 1
o Hypergraph Representation: 3r € Z-,, AH C
1 Generalized |H1 NH,| <r— 2 (VHl»Hz = g_[)
Elementary Sp[lEisthl\\/{l\?groozg _(YCS||t|=r ¥¢HWHEH)) @



Matroid Intersection Problem (Unweighted)

Input: S: Finite set, M, M,: Matroids on S (oracle)
Goal: maximize |Y| subjecttoY € 7, N 7,

e Usually, separate oracles are given, i.e.,
we can ask for each subset X € S and eachi =1, 2,
whether X € J; or not, the rank r;(X), etc.

 Many Applications (Special Cases)
o Bipartite matching: Partition + Partition
o Arborescence (packing): Partition + Graphic (unions)
o Dijoin: Partition + Crossing Submodular Function [Frank-Tardos 1981]
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Matroid Intersection Problem (Weighted)

Input: S: Finite set, M, M,: Matroids on S (oracle), w:S = R
Goal: maximize w(Y) subjecttoY € 3, N7, (and |Y| = k for each k)

e Usually, separate oracles are given, i.e.,
we can ask for each subset X € S and eachi =1, 2,
whether X € J; or not, the rank r;(X), etc.

 Many Applications (Special Cases)
o Bipartite matching: Partition + Partition
o Arborescence (packing): Partition + Graphic (unions)
o Dijoin: Partition + Crossing Submodular Function [Frank-Tardos 1981]
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Matroid Intersection Problem (Weighted)

Input: S: Finite set, M, M,: Matroids on S (oracle), w:S = R
Goal: maximize w(Y) subjecttoY € 3, N7, (and |Y| = k for each k)

* Usually, separate oracles are given, i.e.,
we can ask for each subset X € S and eachi =1, 2,
whether X € J; or not, the rank r;(X), etc.

* The goal of this study is to clarify what happens if the oracle is restricted:
[CI] whether X € J; N J, or not,

[MIN] 71in (X) = min{r; (X),r,(X)}, or

[SUM] T5um (X) = 11 (X) + 1 (X).

44
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Most of them require

“Matroid Intersection is Tractable” separate information

of two matroids

Basic Strategy of Efficient Algorithms

e Starting with Y = @, repeatedly update the current solution Y.

* For each update,
o construct the exchangeability graph w.r.t. Y,
o find an augmenting path P in the graph, and p
o flip the current solution along the path,i.e.,Y <« Y A P.

* The edges in the graph are oriented according to
in which matroid the two elements are exchangeable.

Assumption: Independence in each matroid can be tested.



Exchangeability Graph

Def. M4, M,: Matroids on a common ground set S, Y €7, N7,
D|IY] = (S\Y,Y;A|Y]): Exchangeability Graph w.r.t. Y
13
o AlY] = A{[Y] U A,[Y], where 7 y
c 4lY] =1, x) Y —y+x€T ] o0
o ALY ={(,)|Y-y+x€T} o—>0
e S, ={x|Y+x€7J;} (Sources)
e S, ={x|Y+x€T,} (Sinks)

25N
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Augmentability (Unweighted)

( ) S
Thm. M4, M,: Matroids on a common ground set S, Y € 7, N J, !

D|Y] = (S\Y,Y;A|Y]): Exchangeability Graph w.rt. Y
* If D|Y] has no §;=S, path, then |Y| is maximum.

* If P is a shortest S;—S, pathin D|Y],thenY AP €J, Nn7J,. s,
\ D -

-~ P

O(nr?) time in total, where r := opt.value < n [ @

* D|Y] is constructed by O(nr) oracle calls @
4

P is found by BFS in linear time ( n vertices, O(nr) edges) |’ | ®
o1
\\',

 ##(iteration) isr + 1



Augmentability (Weighted)

48

-

G

Thm. M., M,: Matroids on a common ground set S
Y € argmax {W(X) ‘ X € ill(k) N ilz(k)} (k =|Y|)
D|Y] = (S\Y,Y;A|Y]): Exchangeability Graph w.rt. Y
cost(P) =w(PNnY)—w(P\Y) (P:path/cycle)
* D|Y] has no negative-cost cycle.

* If P is a shortest cheapest S;—S, path in D[Y],
thenY A P € argmax {W(X) | X € 71(k+1) N 72(k+1) }

O(n?r?) time in total (Bellman—Ford, Weight Splitting, etc.)



Outline

 Matroid Intersection under Restricted Oracles
o First Step: What can be done in general by Common Independence Oracle
o Results on Each Restricted Oracle
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Exchangeability Graph via Restricted Oracles

_
Def. M;, M,: Matroids on a common groundsetS, Y €J; N7, | (oa !

D|IY] = (S\Y,Y;A|Y]): Exchangeability Graph w.r.t. Y
02
« A[Y] = A{[Y] U A,[Y], where - y
o A[Y]={(,x) | Y —y +x[€ 1} oce—e
o A,[Y] ={(x,y) Y—y+x} o—>0

e S, ={x|Y+ x (Sources)
e S, ={x|Y+ x} (Sinks)

50
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Sources and Sinks via Restricted Oracles

— . [Cl] whether X € 7, N J, or not
Si=ixl¥+xed) (=12 [MIN] Tiyin (X) = min{ry (X), 7,(X)}

= Sl N SZ & Y+re :]1 N :72 [SUM] 75um(X) = (X) + 1, (X)

This can be recognized by Cl, and hence by MIN or SUM.

Y 4
4 \\
S - "l,- ~ \\
1/, | N i
4 1 S I
1 \ \ J
I \ 1 ’
\ N l' S
\ ~ P
A
\\ V4 S 2
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Sources and Sinks via Restricted Oracles

— . [Cl] whether X € 7, N J, or not
Si=ixl¥+xed) (=12 [MIN] Tiyin (X) = min{ry (X), 7,(X)}

= Sl N SZ & Y+re :]1 N :72 [SUM] 75um(X) = (X) + 1, (X)

This can be recognized by Cl, and hence by MIN or SUM.

*seESI\S,, teES \S; & :g#l/’—l',::\ \\‘n
(Y +5) = Y|+ 1, n(Y +5) =] [N e
(Y +0) = Y], (Y +0) = Y] +1 N Soe il
(Y +s+0) =Y +1, (Y +s+)=IY[+1 7 S

This can be recognized (up to symmetry) by MIN.
Even in the SUM or Cl case, we can try all possible pairs.
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Exchangeability Graph via Restricted Oracles

_
Def. M;, M,: Matroids on a common groundsetS, Y €J; N7, | (oa !

D|IY] = (S\Y,Y;A|Y]): Exchangeability Graph w.r.t. Y
02
« A[Y] = A{[Y] U A,[Y], where - y
o A[Y]={(,x) | Y —y +x[€ 1} oce—e
o A,[Y] ={(x,y) Y—y+x} o—>0

VS ={x|Y+ x (Sources)
vS,={x|Y+ x} (Sinks)
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Exchange Edges via Restricted Oracles

L X Y [Cl]] whether X € 7; NJ, or not
AY]=1Gx) Y —y+x €1} o&——® | 1 %) = mingr (0,100
ALY ={y)|Y—-y+x€T,} o—>® [SUM] Tyum(X) = 1,(X) + 15(X)

* (y,x) € A1[Y], (x,y) € A,[Y]
1 2

This can be recognized by Cl, and hence by MIN or SUM.
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Exchange Edges via Restricted Oracles

— x Y [Cl] whether X € J; N J, or not
A=) [V =y+x €7, } oe—e [MIN] nin (X) = mingry (X0, 7,(X))

ALY ={y)|Y—-y+x€T,} o—>® [SUM] Tyum(X) = 1,(X) + 15(X)

* (y,x) € A1[Y], (x,y) € A,[Y]
This can be recognized by Cl, and hence by MIN or SUM.

oE—>0

* Difficult to recognize edges in one direction...
o SUM (or CI+MAX) is strong enough to emulate Bellman—Ford (Weighted)
o MIN can emulate BFS (Unweighted), and it is somewhat extendable
o Cl only solves some special cases, and seems too weak in general (??7?)



Outline

* Matroid Intersection under Minimum Rank Oracle
> How to Solve Unweighted Problem
o Results on Weighted Problem

56
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Unweighted Matroid Intersection via MIN sz 2006)

Emulate a usual algorithm on the Overestimated Exchangeability Graph

* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
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Unweighted Matroid Intersection via MIN sz 2006)

Emulate a usual algorithm on the Overestimated Exchangeability Graph

* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

e Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.

— None of such fake edges is used in a shortest path!

( )

Thm. Y € 3, nJ,, D[Y]: Exchangeability Graph w.r.t. Y
 If D|Y] has no §;=S, path, then |Y| is maximum.
* If P is a shortest S;-S, pathin D[Y],thenY AP €37, N 7J,.

. J
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+XEji} (l:].,Z)
Assume Sl ﬂSZ —_ @, S € Sl' L € Sz Al[Y]={(y,x)|Y—y+x671}

'Y-I-SEf]l\f]z, Y‘l‘tegz\gl Az[Y]={(x,3’)|Y—J’+XE7z}

e Vy ey,
c yt)eA Y] e n(Y—y+t) =Y & min(Y —y+1t) =][Y]
c (5,y) EAlY] & (Y —y+t)=|Y] & muin(Y —y +5s) =[Y]
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+XE7i} (l:].,Z)
AlYI={x) Y -y+xel}
'Y-I-SEf]l\f]z, Y‘l‘tegz\gl Az[Y]={(x,3’)|Y—J’+XE7z}

Assume Sl ﬂSZ — @, S € Sl' t € Sz

e Vy ey,
c yt)eA Y] e n(Y—y+t) =Y & min(Y —y+1t) =][Y]
c (5,y) EAlY] & (Y —y+t)=|Y] & muin(Y —y +5s) =[Y]

f-\

 SupposethatVx e S\ (YUS; US,),Vy €Y, (s Q;
+ Estimate 3(y,x) < (3,x) € A[Y] or (v,0) € A;[Y] 51777 o

o Estimate A(x,y) & (x,y) € A,|Y]or (s,y) € A,]Y] 5 o(.--., Y

/

-

(toA

~-'
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+X67i} (l:].,Z)
Assume Sl ﬂSZ —_ @, S € Sl' L € Sz Al[Y]={(y,x)|Y—y+x671}

'Y‘I‘SE:]l\:]z, Y‘l‘tEjz\jl Az[Y]={(x,Y)|Y—J’+x€7z}

e Vy ey,
c ) e lY] e nY—y+t) =Y & mn(Y —y+1¢t) =[Y]
c () eLY] @ Y —y+t) =Y & mY —y+s) =Y

* SupposethatVx e S\ (YUS, US,),Vy €Y,

o Estimate 3(y,x) & |(y,x) € A{[Y] or (y,t) € A,[Y]
o Estimate A(x,y) < |(x,y) € A,|Y] or (s,y) € A,[Y]

Enough to find a shortest path! (Wrong = 3Shortcut)
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+XE7i} (l:].,Z)

Assume S, NS, =0, sES,, tES, AY1={Gx) Y-y +x€7)

'Y-I-SEf]l\f]z, Y‘l‘tegz\gl Az[Y]={(x,3’)|Y—J’+XE7z}
 Estimate3(y,x) (xeS\(YUS;US,),yEY) xo(----oy
< (y,x)€eAd ,t) EA
(v, x) 1[Y]or(y,t) 11Y] (toA

S rnY—y+x)=|Y]orrn(Y —y+t)=|Y] - Sz
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+XEji} (l:].,Z)

Assume S, NS, =0, sES,, tES, AY1={Gx) Y-y +x€7)

'Y-I-SEf]l\f]z, Y‘l‘tegz\gl Az[Y]={(x,3’)|Y—J’+XE7z}
 Estimate3(y,x) (xeS\(YUS;US,),yEY) xo(----oy
= (y,X)EAl[ ]Or()’»t)EAl[ ] (tOA
o n( —y+x) =Ylorn(Y —y+0 =y| =5, Bz rrad
S —y+x+t)=|Y] Y, =Y+t

Y| =1 (Yyt) =1 (Yyee —y) = max{r (Y, — ), (Y —y)}
X,t (S S\Sl — Cll(Y)

Yy —y)+rnVi—y) 2V —y)+rn(Y —y)
=1Y| -1
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+XE7i} (l:].,Z)

Assume S, NS, =0, sES,, tES, AY1={Gx) Y-y +x€7)

'Y-I-SEf]l\f]z, Y‘l‘tegz\gl Az[Y]={(x,3’)|Y—J’+XE7z}
 Estimate3(y,x) (xeS\(YUS;US,),yEY) xo(----oy
< (y,x)€eAd ,t) EA
(v, x) 1[Y]or(y,t) 11Y] (toA

S rnY—y+x)=|Y]orrn(Y —y+t)=|Y] - Sz
S —y+x+t)=|Y]

S rinY—y+x+t) =|Y|
(Y —y+x+t)2nrn(Y+t)—-1=|Y])
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Overestimation of A|Y| via MIN (Unweighted)

Si:{X|Y+XEji} (l:].,Z)

Assume S, NS, =0, sES,, tES, AY1={Gx) Y-y +x€7)

'Y-I-SEf]l\f]z, Y‘l‘tegz\gl Az[Y]={(x,3’)|Y—J’+XE7z}
 Estimate3(y,x) (xeS\(YUS;US,),yEY) xo(----oy
< (y,x)€eAd ,t) EA
(v, x) 1[Y]or(y,t) 11Y] (toA

Sl —y+x)=|Y]orrnn(Y —y+1t)=|Y] - Sz
S —y+x+t)=|Y]
S rinY—y+x+t) =|Y| 01

( SO N
\_,&

e Estimate A(x,y) © ruyin(Y —y+x+5s) =|Y]|
ro-33e
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Unweighted Matroid Intersection via MIN sz 2006)

Emulate a usual algorithm on the Overestimated Exchangeability Graph

* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

e Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.

— None of such fake edges is used in a shortest path!

( )

Thm. Y € 3, nJ,, D[Y]: Exchangeability Graph w.r.t. Y
 If D|Y] has no §;=S, path, then |Y| is maximum.
* If P is a shortest S;-S, pathin D[Y],thenY AP €37, N 7J,.

. J
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Unweighted Matroid Intersection via MIN sz 2006)

Emulate a usual algorithm on the Overestimated Exchangeability Graph

* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

* Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.

— None of such fake edges is used in a shortest path!

 When the algorithm halts, a dual optimal solution is found by reachability.
Thm. max{|Y||Y €T, NI, }=min{r,in(Z) + rin(S\Z) | Z € S}

|Y| — rmin(y N Z) + rmin(y \Z) = T'min(Z) + rmin(S \Z) = 7‘1(2) + TZ(S \Z)
=Y nZ| =Y\ Z|
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Weighted Matroid Intersection via MIN sexvy 2023+

Try to emulate usual algorithms on the Overestimated Exchangeability Graph
* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

* Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.
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Weighted Matroid Intersection via MIN sexvy 2023+

Try to emulate usual algorithms on the Overestimated Exchangeability Graph
* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).
e Other edges are overestimated so that

if an edge e is wrongly estimated, there is a correct shortcut skipping e.

o Such fake edges may be used in a (shortest) cheapest path!

o They may cause negative-cost cycles! (NP-hard!?)

Thm. Y € 71(k) N 72(k): Max-Weight, cost(P) :=w(P NY)—-w(P\Y) (P:path/cycle)
* D[Y] has no negative-cost cycle.
* |f P is a shortest cheapest S;—S, pathin D[Y],thenY AP € 71(k+1) N 7§k+1) is max-weight.
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Weighted Matroid Intersection via MIN sexvy 2023+

Try to emulate usual algorithms on the Overestimated Exchangeability Graph
* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

e Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.
o Such fake edges may be used in a (shortest) cheapest path!

o They may cause negative-cost cycles! (NP-hard!?)

e Extra information from at most two-by-two exchanges may refine the graph!
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Extra Info. from Two-by-Two Exchange iesxv 202+

Extra information from at most two-by-two exchanges may refine the graph!

* Tmin(Y —y+x) =Y & Xo&=—>0Y
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Extra Info. from Two-by-Two Exchange iesxv 202+

Extra information from at most two-by-two exchanges may refine the graph!
* Tmin(Y —y+x) =Y & Xo&=—>0Y

e Otherwise,

° Tmin(Y =1 =y +x) =Y -1 & x<:yl or xo<..y1
Y2 Vs
X X
° Tmin(Y =y + X1 +x5) = |Y] = 1Z>y or 1Z>'y
xZ xz
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Extra Info. from Two-by-Two Exchange iesxv 202+

Extra information from at most two-by-two exchanges may refine the graph!

* Tmin(Y —y+x) =Y & Xo&=—>0Y

e Otherwise,

° Tmin(Y =1 =y +x) =Y -1 & x<:yl or xo<..y1
Y2 Vs

° Tmin(y — Yy +X +x2) — |Y|

e Otherwise (none of the above holds),

Tmin(Y = y1— V2 +x,+x) =[Y| -1 <

X1 X1
xzz>y or x2>y

X1 0€—@ V1 X1 V1
X2 Q3@ V2 g; ng><:J’2

X1 O @ V1 X1 B4
X2 0€6—@ )7 of ng><:}’2
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Weighted Matroid Intersection via MIN sexvy 2023+

Try to emulate usual algorithms on the Overestimated Exchangeability Graph
* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

e Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.

o Such fake edges may be used in a (shortest) cheapest path!
o They may cause negative-cost cycles! (NP-hard!?)

e Extra information from at most two-by-two exchanges may refine the graph!

* Any graph consistent with all the extra information is suitable for emulation!!
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Consistency with Extra Info. is Enough  ss«wv20234

Any graph consistent with all the extra information is suitable for emulation!!

N

(M Y € argmax {W(X) ‘ X € 71(k) N 72(k)} (k =1|Y|)
D|[Y]: Exchangeability Graph w.r.t. Y
D[Y]: Subgraph of the overestimation consistent with all the extra info.
cost(P) =w(PnNnY)—w(P\Y) (P:path/cycle)

 D[Y] has no negative-cost cycle.

» VP: shortest cheapest S;—S, path in D[Y],
JP: shortest cheapest S;—S, path in D[Y] with the same vertex set,

and vice versa.
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Weighted Matroid Intersection via MIN sexvy 2023+

Try to emulate usual algorithms on the Overestimated Exchangeability Graph
* Sources, Sinks, and Edges around them are correctly recognized (up to sym.).

* Other edges are overestimated so that
if an edge e is wrongly estimated, there is a correct shortcut skipping e.

o Such fake edges may be used in a (shortest) cheapest path!
o They may cause negative-cost cycles! (NP-hard!?)

e Extra information from at most two-by-two exchanges may refine the graph!
* Any graph consistent with all the extra information is suitable for emulation!!

* Finding a consistent graph is NP-hard... (4-coloring of 3-colorable graphs)



Tractable cases of WMI via MIN sk 2023+

* When VC]_ (S 61,VC2 (S 62, Cl .¢_ CZ and CZ .¢_ Cl
— Finding a consistent graph is reduced to 2-SAT

77
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Extra Info. from Two-by-Two Exchange iesxv 202+

Extra information from at most two-by-two exchanges may refine the graph!

* Tmin(Y —y+x) =Y & Xo&=—>0Y
_ 2-SAT works! (Easy)
e Otherwise,

8 )
° Tmin(Y =1 =y +x) =Y -1 & xo<:yl or xo<..y1
Y2 Vs
X X
Sy Ea ) = e xlz>'y O >

e Otherwise (none of the above holds), X1O<—QY1 g><:3’1

or

X2 O=——3>@ V> X2 Y2
TminlY =1 =2 +x+x) =Y-1 & X1 0—>0 Y orx1 y
: 1 1 1

Can represent 4-coloring (Hard) X20€6—0 > or 8><:)’z)

\




Tractable cases of WMI via MIN sk 2023+

* When VC]_ (S 61,VC2 (S 62, Cl .¢_ CZ and CZ .¢_ Cl
— Finding a consistent graph is reduced to 2-SAT

« When3i € {1,2},VC €C;, |C| <k
- 0 (2" : poly(n)) time by 2-SAT + Brute-Force Guess
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Tractable cases of WMI via MIN sk 2023+

* When VC]_ (S 61,VC2 (S 62, Cl .¢_ CZ and CZ .¢_ Cl
— Finding a consistent graph is reduced to 2-SAT

* When3i € {1,2},VC €C;, |IC| <k
- 0 (2" : poly(n)) time by 2-SAT + Brute-Force Guess

* Lexicographical Maximization
o Max. #(heaviest); Sub. to this, Max. #(second heaviest); and so on

o Update with preserving the numbers of heavier elements can be done
via Underestimation of the Exchangeability Graph (by 2-SAT)

o Approximation with factor 2 or better for the original problem [Bkyy 2022]

80



Summary

Question

Is matroid intersection tractable if we only get the following information?

For each subset X C S,

[CI
[MIN]
[SUM]
[MAX]

whether X € 7, N J, or not,
Tmin(X) = min{r; (X), r,(X)},
Tsum (X) = 11 (X) + (X)), or
Tmax(X) = max{r, (X), r,(X)}.

r

Obs.

MAX is too weak as it gives no information on the second matroid
if the first matroid is free, i.e., 1 (X) = | X| (VX € 5).

~\
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Summary

What we know (Results)

[CI] whether X € J; N J, or not

[MIN] rmin(X) — min{‘rl(X),’rz(X)}
[SUM] rsum(X) =1 (X) + rp(X)
[MAX] Tinax(X) = max{r;(X),r»(X)}

e Relation between Restricted Oracles

 SUM and CI+MAX can solve Weighted in general (Emulate Bellman—Ford)

 MIN can solve Unweighted in general, and Weighted in some cases

o No circuit inclusion (2-SAT)

o All circuits are small in one matroid (2-SAT + Brute-Force Guess, FPT)

o Lexicographical Maximization (2-SAT, 2- or better Approximation in general)

* Cl can solve Unweighted/Weighted in some cases

o One is a partition matroid, Unweighted (Emulate BFS)

o One is an elementary split matroid, Weighted (Brute-Force)
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S ummad ry [CI] whether X € 7; N 7, or not

[MIN] rmin(X) = min{‘rl(X),’rz(X)}
[SUM] rsum(X) =1 (X) + rp(X)

What we know (Results)
[MAX] rmax(X) = max{r;(X), n(X)}

e Relation between Restricted Oracles
 SUM and CI+MAX can solve Weighted in general (Emulate Bellman—Ford)

 MIN can solve Unweighted in general, and Weighted in some cases
o No circuit inclusion (2-SAT)
o All circuits are small in one matroid (2-SAT + Brute-Force Guess, FPT)
o Lexicographical Maximization (2-SAT, 2- or better Approximation in general)

* Cl can solve Unweighted/Weighted in some cases
o One is partition or chain (general upper bounds), Unweighted (Emulate BFS)
o One is an elementary split matroid, Weighted (Brute-Force)
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Summary

What we know (Results)

[CI] whether X € J; N J, or not

[MIN] rmin(X) — min{‘rl(X),’rz(X)}
[SUM] rsum(X) =1 (X) + rp(X)
[MAX] Tinax(X) = max{r;(X),r»(X)}

e Relation between Restricted Oracles

* SUM and CI+MAX can solve Weighted in general

 MIN can solve Unweighted in general, and Weighted in some cases

* Cl can solve Unweighted/Weighted in some cases

What we want to know (Open)

e Can MIN solve Weighted in general? Or, is it hard?

e Can Cl solve Unweighted/Weighted in general? Or, is it hard?
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