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Undetectable (False Data Injection) Attack 

A difference Δ𝑧 ∈ 𝐑𝐴∪𝑉 of measurement values 

is called an undetectable attack. 

⇔  ∃Δ𝜃 ∈ 𝐑𝑉 s.t. Δ𝑧 = 𝐻Δ𝜃 

  𝑧 + Δ𝑧 = 𝐻𝜃 

  𝑧 + Δ𝑧 = 𝐻Δ𝜃 

  𝑧 + Δ𝑧 = 𝐻(𝜃 + Δ𝜃) 

(Liu, Ning, Reiter 2009) 

Actual: 

Attack: 

Misrecognition: 

def 



Sparsest Attack (Global Security) 
(Liu, Ning, Reiter 2009) 

A nonzero undetectable attack 𝐻Δ𝜃 ∈ 𝐑𝐴∪𝑉 ∖ 𝟎   

with the fewest nonzero entries (attacked points) 

minimize
Δ𝜃∈𝐑𝑉

     𝐻Δ𝜃 0 

subject to     𝐻Δ𝜃 ≠ 𝟎 

Attacking many points 

 →  Easy to prevent 

Attacking few points 

 →  Hard to prevent 

Δ𝑧 = 𝐻Δ𝜃 Δ𝑧 = 𝐻Δ𝜃 



Security Index (Local Security) 
(Sandberg, Teixeira, Johansson 2010) 

The minimum number of nonzero entries of 
an undetectable attack 𝐻Δ𝜃 ∈ 𝐑𝐴∪𝑉 
to attack a specified arc or node 𝑘 ∈ 𝐴 ∪ 𝑉 

minimize
Δ𝜃∈𝐑𝑉

     𝐻Δ𝜃 0 

subject to   𝐻𝑘Δ𝜃 ≠ 0 

Attacking many points 

 →  Easy to prevent 

Attacking few points 

 →  Hard to prevent 

Δ𝑧 = 𝐻Δ𝜃 Δ𝑧 = 𝐻Δ𝜃 𝑘 𝑘 



Sparsest Attack and Security Index 
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Sparsest Attack and Security Index 

Fact 

Any sparsest attack attains the security indices 
of the arcs and nodes to be attacked. 

Fact 

The security index of a node is equal to 
the minimum security index among its incident arcs’. 

A sparsest attack can be found 
by computing the security indices of ALL arcs!!! 

𝑣 
𝑎1 

𝑎2 

𝑎3 
(S.I. of 𝑣)  = min

𝑖=1,2,3
(S.I. of 𝑎𝑖) 
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(Sou, Sandberg, Johansson 2011) 

Approx. by LP-relax 
(Sou, Sandberg, Johansson 2013) 

Exact by min-cut 
in auxiliary graph 

(Hendrickx, Johansson, Junger, 
Sandberg, Sou  2012) 

Exact by min-cut 
in hypergraph 

Security indices of ALL arcs 

Single computation!! 



Why min-cut? 



Lemma (Sou et al. 2011) 

For any arc or node, there exists 
an elementary attack attaining the security index. 

→ Consider only elementary attacks 

→ Assign 0 or 1 to each node (Bipartition the node set 𝑉) 

Elementary Attack 

An undetectable attack 𝐻Δ𝜃 ∈ 𝐑𝐴∪𝑉 

is elementary.  ⇔  Δ𝜃 ∈ 0, 1 𝑉 
def 

Δ𝜃 = 0 Δ𝜃 = 1 
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Fact 

An arc 𝑢𝑣 ∈ 𝐴 is attacked in an elementary attack. 

⇔ Δ𝜃 𝑢 ≠ Δ𝜃 𝑣  

⇔ 𝑢𝑣 is cut off by separating 0-nodes and 1-nodes. 

Elementary Attack 

An undetectable attack 𝐻Δ𝜃 ∈ 𝐑𝐴∪𝑉 

is elementary.  ⇔  Δ𝜃 ∈ 0, 1 𝑉 
def 

Δ𝜃 = 0 Δ𝜃 = 1 

𝑢 𝑣 

→  # of attacked arcs = # of arcs cut off = cut capacity 

→  Approx. by min-cut (Sou et al. 2011) How about attacked nodes? 



Counting Attacked Nodes 

Construct auxiliary graph 
(Hendrickx, Johansson, Junger, 

Sandberg, Sou  2012) 

Use hypergraph 

• No additional node 

• A sparsest attack can be found 
by single min-cut computation!! 

• Large size 

• A sparsest attack requires 
(# of arcs) min-cut comps. 



Hypergraphs 

Each edge connects two nodes. Each hyperedge connects 
an arbitrary number of nodes.  

Undirected graph Hypergraph 

edge ⇔ hyperedge 
of size 2 

hyperedge 
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Construction of Hypergraph 

Δ𝜃 = 1 Δ𝜃 = 0 

Lemma (Y.-O.-T.-I.  2014) 

Cut capacity in this hypergraph 
 

# of arcs & nodes to be attacked 

 



Computing Security Index 

Computing the security index of an arc 𝑎 = 𝑠𝑡 ∈ 𝐴 

→  Finding a minimum 𝑠—𝑡 cut in a hypergraph 

𝑠 
𝑡 

𝑎 

Δ𝜃 = 1 Δ𝜃 = 0 

Fact 

An arc 𝑠𝑡 ∈ 𝐴 is attacked. 

⇔ Δ𝜃 𝑠 ≠ Δ𝜃 𝑡  

⇔ 𝑠𝑡 is cut off. 



Computing Security Index 

Computing the security index of an arc 𝑎 = 𝑠𝑡 ∈ 𝐴 

→  Finding a minimum 𝑠—𝑡 cut in a hypergraph 

Theorem (Y.-O.-T.-I.  2014) 

For any arc in any directed graph 𝐺 = 𝑉, 𝐴 , 
one can compute the security index in O 𝑉 𝐴  time. 

• By a hypergraph min 𝒔—𝒕 cut algorithm (Pistorius, Minoux 2003)  

• The same order as the existing exact method (Hendrickx et al. 2012), 
but faster in practice because their auxiliary graph is large. 



Finding Sparsest Attack 

Finding a sparsest attack in the whole network 

→  Finding a minimum cut in a hypergraph 

Theorem (Y.-O.-T.-I.  2014) 

For any directed graph 𝐺 = 𝑉, 𝐴 , one can find 
a sparsest attack in O 𝑉 𝐴 + 𝑉 2 log 𝑉  time. 

• By a hypergraph min-cut algorithm (Klimmek, Wagner 1996) 

• Essential speeding up!! 
Applying the existing exact method (Hendrickx et al. 2012) to all arcs 
→  O 𝑉 𝐴 2  time 
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Problems and Solution Methods 

• Finding a sparsest attack in the whole network 

― hyp. global min. cut: exact method by hypergraph min-cut 

• Computing the security index of an arc 𝑎 ∈ 𝐴 

― hyp. min. s-t cut: exact method by hypergraph min-cut 

― min. s-t cut exact: exact method by min-cut in auxiliary graph 

― min. s-t cut relax: approx. method by min-cut in input graph 

― L1-relax (LP): approx. method by LP-relaxation 

― L0-exact (MIP): exact method by MIP solver (CPLEX) 

(Hendrickx et al.  2012) 

(Sou et al.  2011) 

(Sou et al.  2013) 

minimize
Δ𝜃∈𝐑𝑉

     𝐻Δ𝜃 0 

subject to   𝐻𝑎Δ𝜃 ≠ 0 

Proposed 
methods 



Proposed method 

Computational Time for Security Index 

Polish systems IEEE data sets Tokyo-Tohoku 
(East Japan) 

About 1.8 times faster on average 
than the existing exact method. 

Fails to obtain an exact solution 
for 10~20% arcs 



Proposed methods 

Computational Time for Sparsest Attack 
Predominantly fastest!! 

Polish systems IEEE data sets Tokyo-Tohoku 
(East Japan) 



Conclusion 

• A sparsest attack and 

the security index of each measurement point 

are significant security criteria for power networks. 

• A sparsest attack can be found fast and exactly 

by finding a minimum cut in a hypergraph. 

• The security index of each measurement point 

can be computed fast and exactly 

by finding a minimum 𝑠—𝑡 cut in a hypergraph. 


