A Strongly Polynomial Algorithm
for Finding a Shortest Non-zero Path
in Group-Labeled Graphs

Yutaro Yamaguchi

Osaka University, Japan.

SODA’20 @Salt Lake City Jan 7, 2020

Shortest Path Problem

Input G = (V, E): Undirected Graph
¢ € RE,: Edge Length, s,t € V:Terminals
Goal Find a shortest s—t path P in G

Shortest Path Problem

Input G = (V, E): Undirected Graph

E

£ € R

=0

: Edge Length, s,t € V: Terminals

Goal Find a shortest s—t path P in G

P ¢(P)=40

Solved by Dijkstra’s Algorithm

Shortest Odd Path Problem

Input G = (V, E): Undirected Graph
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest odd s—t path P in G

P’ £(P") =40
..................... #(edgeS) IS even

z°
3
[| ‘t
| “
‘t
.
*

Shortest Odd Path Problem

Input G = (V, E): Undirected Graph
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest odd s—t path P in G

P 2(P) =70
#(edges) is odd

——o it

Solved via Weighted Matching

Shortest Non-zero Path Problem

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V:Terminals
Goal Find a shortest non-zero s—t path P in G

1 '=(Z+)

Shortest Non-zero Path Problem

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

f(P’) — 40 PE O e :

>y,
L)
\J
L)
L]
.
L J
.
o
.

“
.
.
.
.
.
.
.
.
%®
.

Shortest Non-zero Path Problem

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

Pe(P")=0+1+(-1) =0 1 P [=(+)
g(PH) — 70 ““ n

IS
IS
S
; IS
. IS
IS
: IS
e
S

“‘
S : 3
“‘ . ..
. :
o
.

Shortest Non-zero Path Problem

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

2(P) = 110 ’

Shortest Non-zero Path Problem

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

| Thm. Solved by O(|V| - |E|) Elementary Operations

[This Work]
 When |[I'| = 2, This Problem = Shortest Odd Path Problem

* Whenl'=Z, & D Z, (i.e,Tlisfinite & abelian),

Randomized Pseudo-Poly via Permanent Computation
[Kobayashi—Toyooka 2017]

* WhenT'=Z, @D Z,, (p;:prime),

Deterministic Strongly-Poly via Weighted Linear Matroid Parity
[Y. 2016] + [Iwata—Kobayashi 2017]

Outline

* Algorithm Framework
— Basic ldea
— Auxiliary Problem (Shortest Unorthodox Path)
— Main Lemma

* Key Structure: Lowest Blossoms
— Detour yields a Shortest Unorthodox Path (SUP)
— Shrinking preserves SUP Problem

 Conclusion

Outline

* Algorithm Framework
— Basic ldea
— Auxiliary Problem (Shortest Unorthodox Path)
— Main Lemma

Basic Idea

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

1. Find a shortest s—t path P in G by Dijkstra’s Algorithm
2. If Pisnon-zero (Y;(P) # 1r), then return P

. ON&()P) + 1p
L

Basic Idea

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

1. Find a shortest s—t path P in G by Dijkstra’s Algorithm

2. If Pisnon-zero (Y;(P) # 1r), then return P

3. Otherwise, find and return an s—t path Q in ¢ s.t.
£(Q) is minimized subject to Y- (Q) # Y, (P)

Ye(Q) # Ye(P) = 1

Auxiliary Problem for Main Task

Input (G = (V,E),¥,s,t): Original Input
P: Shortest s—t Path in G
Goal Find a shortest unorthodox s—t path Q in G

£(Q) is minimized subject to Y. (Q) # Y. (P)

Ye(Q) # Ygs(P)

Auxiliary Problem for Main Task

Input (G = (V,E),¥,s,t): Original Input
T = U,ey P,: Shortest Path Tree of G rooted at s
Goal Find a shortest unorthodox|s—t path Q in G

Dijkstra’s Algorithm
lOutput

Def.
A Tree in which each s—v path B, is shortest in G

.
'.
.
5

Ye(Q) # Y (Pp)

Finding a Shortest Unorthodox Path (SUP)

Input (G = (V,E),¥,s,t): Original Input
T = U,ey P,: Shortest Path Tree of G rooted at s
Goal Find a shortest unorthodox s—t path Q in G

1. Find a “NICE” non-zero cycle C (y;(C) # 1p)

Finding a Shortest Unorthodox Path (SUP)

Input (G = (V,E),¥,s,t): Original Input
T = U,ey P,: Shortest Path Tree of G rooted at s
Goal Find a shortest unorthodox s—t path Q in G

1. Find a “NICE” non-zero cycle C (y;(C) # 1p)

2. If tison C, then return a Detour () from P, around C

Finding a Shortest Unorthodox Path (SUP)

Input (G = (V,E),¥,s,t): Original Input
T = U,ey P,: Shortest Path Tree of G rooted at s
Goal Find a shortest unorthodox s—t path Q in G

1. Find a “NICE” non-zero cycle C (y;(C) # 1p)
2. If tison C, then return a Detour) from P, around C

3. Otherwise, shrink C into a single vertex b,
and recursively solve a small instance

T
b{ ¢ Shrink b GA
> ~SSss
S S ‘ W f

Recursion

Main Lemma (Informal)

r Lem. 3C: Non-zero Cycle with avertex b € C s.t.

e For avertexin C — b, a detour Q around C is an SUP

e After shrinking C into b, corresponding SUPs remain
Moreover, such C can be found in O(|E|) time

0 Shortest
Unorthodox

ol]
]
.....
oy
L]

Recursion

On Computational Time

r Lem. 3C: Non-zero Cycle with avertex b € C s.t.

e For avertexin C — b, a detour Q around C is an SUP

e After shrinking C into b, corresponding SUPs remain
Moreover, such C can be found in O(|E|) time

" Obs. Shrinking occurs at most (|V| — 2) times

| Cor. An SUP can be found in O(|V| - |E]) time (if exists):

#(vertices) is reduced

Shrink b O/<L
>
S W t

Recursion

Outline

* Key Structure: Lowest Blossoms
— Detour yields a Shortest Unorthodox Path (SUP)
— Shrinking preserves SUP Problem

Blossom

Def. T = U,y B,: Shortest Path Tree of G rooted at s
C is a Blossom

0

e Je€ E—T st. C€ T+ e (i.e., CisaFundamental Circuit)
* P (C) # 1 (‘:’ Yo (P *e) # ¢G(Pv))

\

Height: ~(£(B,) + £(B,) + £(e))

L]
.....
1

Lowest Blossom (LB)

Def. T = U,y B,: Shortest Path Tree of G rooted at s
C is a Lowest Blossom

0

e Je€e E—T st. C€ T+ e (i.e., CisaFundamental Circuit)
* ¢ € argmin {f(Px) + f() + () | Y (P * f) # 1/)G(Py)}

f=1{xy}

Helght . (f(Pu) +¢(P,) + {’(e))
> Minimized

L]
.....
1

Detour around LB yields SUP

Def. T = U,y B,: Shortest Path Tree of G rooted at s
C is a Lowest Blossom

0

e Je€e E—T st. C€ T+ e (i.e., CisaFundamental Circuit)
* ¢ € arg min {f(P) +£(P) +(f) | Y (P, x) # 1/)6()}

f=1{xy}

' Lem. For C — b, every detour Q from T is an SUP

Shortest
Unorthodox

ay]
..........

ol]
]
.....
"y
L]

Detour around LB yields SUP

[Lem. For C — b, every detour Q from T is an SUP

Q £(Q) = £(R)?

*

Ll]

......
a,,

]
L]
.....
"y
]

Fix an s—t path R with Y;(R) # Y (Py)

Detour around LB yields SUP

[Lem. For C — b, every detour Q from T is an SUP

Q £(Q <2 Rlsxl x [y pro

]
L]
.....
"y
]

Fix an s—t path R with|y;(R) # Y (P)

e Af ={x,V} ER s.t. Yo (P, *f) # l/)(Py)
o/w, Y6(R) ==y (Yo P ¥6(P))
= Pe(P)™" e (P)|= e (Py)

Contradiction!

Detour around LB yields SUP

[Lem. For C — b, every detour Q from T is an SUP]

Q £(Q <2 Rlsxl x [y pro

]
L]
.....
"y
]

Fix an s—t path R with Y;(R) # Y (Py)

» Af ={x,y} € R st. Ys(B * f) # P(B,)
- ¢(P,) +¢(P,) + 2(f) = £(P,) + £(Q) (Cisan LB)

Detour around LB yields SUP

[Lem. For C — b, every detour Q from T is an SUP]

Q L@ <¢r? Rlsxl x f y R[y, t]

®
"
w,,

Fix an s—t path R with Y;(R) # Y (Py)
» 3f ={x,y} €R st. Y (P *) # P(P))
- ¢(P,) +¢(P,) + 2(f) = £(P,) + £(Q) (Cisan LB)
 /(R[s,x]) = ¢(P,) (P, isshortest)
 /(R|y, t]) = ‘f(Py) — f(Pt)‘ (o/w, 3shortcut for T)

Detour around LB yields SUP

[Lem. For C — b, every detour Q from T is an SUP]

Q (@ <e®! RIsxl x f y pp, 4

1]
a
""""
]
“a,

£(R) = ¢(P,) +£(f) + £(B,) — ¢(P,) = £(Q)

2(P,) +4(P,) + £(f) = £(P,) + £(Q) (Cisan LB)
 /(R[s,x]) = ¢(P,) (P, isshortest)
 /(R|y, t]) = ‘f(Py) — f(Pt)‘ (o/w, Ishortcut for T)

Main Lemma (Informal)

r Lem. 3C: Non-zero Cycle with avertex b € C s.t.

v’ For a vertex in C — b, a detour Q around C is an SUP

? After shrinking C into b, corresponding SUPs remain
v’ Moreover, such C can be found in O(|E]|) time

0 Shortest
Unorthodox

ol]
]
.....
oy
L]

Recursion

Shrinking preserves SUP Problem

Lem. VR: Unorthodox s—t path in G intersecting C,

JR': Unorthodox s—t path in G s.t. £(R") < £(R)
and R’ remains in a shrunk form

Shrmk) o M

ve(fiub—-y) =vPeR; *f)
?(f) = 2R + £(f)

Shrinking preserves SUP Problem

Lem. VR: Unorthodox s—t path in G intersecting C,

JR': Unorthodox s—t path in G s.t. £(R") < £(R)
and R’ remains in a shrunk form

. J

R: Unorthodox s—t path, x: Last Vertex intersecting P, U C
Casel. x € C —b (Easy) Case2. x € P, (Complicated)

Ye(R) # P (Pt)

Shrinking preserves SUP Problem

Lem. VR: Unorthodox s—t path in G intersecting C,

JR': Unorthodox s—t path in G s.t. £(R") < £(R)
and R’ remains in a shrunk form

R: Unorthodox s—t path, x: Last Vertex intersecting P, U C

Casel. x € C — b (Easy)

Yo (P * Rlx, t]) # Y (Pr)
U
R' =P, * R|x, t] is OK
* ¢(P) < £(R[s, x])

Ye(R) # Y (Pe)

Shrinking preserves SUP Problem

Lem. VR: Unorthodox s—t path in G intersecting C,

JR': Unorthodox s—t path in G s.t. £(R") < £(R)
and R’ remains in a shrunk form

.

R: Unorthodox s—t path, x: Last Vertex intersecting P, U C

Casel. x € C — b (Easy)

Y (P * Rlx, t]) = Y (Pr)
e U
: ' R' == Q, * R[x, t] is OK
t | Ve(Qx) #Ys(Py) # Ye(Rls, x])
* £(Qx) < 4(R[s,x])

Ye(R) # Y (Pe)

Outline

 Conclusion

Conclusion

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € RE,: Edge Length, s,t € V: Terminals
Goal Find a shortest non-zero s—t path P in G

| Thm. Solved by O(|V| - |E|) Elementary Operations

Conclusion

Input G = (V,E): I'-Labeled Graph (I': Group)
¢ € Rgqr Edge Length, s,t € V: Terminals

Goal Find a shortest non-zero s—t path P in G

| Thm. Solved by O(|V| - |E|) Elementary Operations

* Dijkstra + Shrinking Lowest Blossoms
* Depending heavily on Nonnegativity of Edge Length

Q. How about a general input “without Negative Cycle”?
[Unconstrained] Strongly-Poly via Weighted Matching
[Parity Constrained] Open

