A Strongly Polynomial Algorithm for Finding a Shortest Non-zero Path in Group-Labeled Graphs

Yutaro Yamaguchi

Osaka University, Japan.

SODA'20 @Salt Lake City Jan 7, 2020

Shortest Path Problem

Shortest Path Problem

Shortest Odd Path Problem

Shortest Odd Path Problem

Input
$$G = (V, E)$$
: Γ -Labeled Graph (Γ : Group)

 $\ell \in \mathbf{R}_{\geq 0}^{E}$: Edge Length, $s, t \in V$: Terminals

<u>Goal</u> Find a shortest **non-zero** *s*–*t* path *P* in *G*

<u>Thm.</u> Solved by $O(|V| \cdot |E|)$ Elementary Operations

[This Work]

- When $|\Gamma| = 2$, This Problem \simeq Shortest Odd Path Problem
- When $\Gamma \simeq \mathbf{Z}_{n_1} \bigoplus \cdots \bigoplus \mathbf{Z}_{n_k}$ (i.e., Γ is finite & abelian), **Randomized Pseudo-Poly** via **Permanent Computation** [Kobayashi–Toyooka 2017]
- When $\Gamma \simeq \mathbf{Z}_{p_1} \oplus \cdots \oplus \mathbf{Z}_{p_k}$ (p_i : prime), **Deterministic Strongly-Poly** via **Weighted Linear Matroid Parity** [Y. 2016] + [Iwata-Kobayashi 2017]

Outline

- Algorithm Framework
 - Basic Idea
 - Auxiliary Problem (Shortest Unorthodox Path)
 - Main Lemma
- Key Structure: Lowest Blossoms
 - Detour yields a Shortest Unorthodox Path (SUP)
 - Shrinking preserves SUP Problem
- Conclusion

Outline

- Algorithm Framework
 - Basic Idea
 - Auxiliary Problem (Shortest Unorthodox Path)
 - Main Lemma
- Key Structure: Lowest Blossoms
 - Detour yields a Shortest Unorthodox Path (SUP)
 - Shrinking preserves SUP Problem
- Conclusion

Basic Idea

<u>Input</u>	$G = (V, E)$: Γ -Labeled Graph (Γ : Group)
	$\ell \in \mathbf{R}_{\geq 0}^{E}$: Edge Length, $s, t \in V$: Terminals
Goal	Find a shortest non-zero <i>s</i> - <i>t</i> path <i>P</i> in <i>G</i>

- 1. Find a shortest s-t path P in G by Dijkstra's Algorithm
- 2. If *P* is non-zero $(\psi_G(P) \neq 1_{\Gamma})$, then return *P*
- 3. Otherwise, find and return an *s*–*t* path *Q* in *G* s.t. $\ell(Q)$ is minimized subject to $\psi_G(Q) \neq \psi_G(P)$

Basic Idea

<u>Input</u>	$G = (V, E)$: Γ -Labeled Graph (Γ : Group)
	$\ell \in \mathbf{R}_{\geq 0}^{E}$: Edge Length, $s, t \in V$: Terminals
Goal	Find a shortest non-zero <i>s</i> - <i>t</i> path <i>P</i> in <i>G</i>

- 1. Find a shortest s-t path P in G by Dijkstra's Algorithm
- 2. If *P* is non-zero $(\psi_G(P) \neq 1_{\Gamma})$, then return *P*
- 3. Otherwise, find and return an s-t path Q in G s.t. $\ell(Q)$ is minimized subject to $\psi_G(Q) \neq \psi_G(P)$

$$s \qquad P \quad \psi_G(P) = 1_{\Gamma}$$

$$f \qquad V_G(Q) \neq \psi_G(P) = 1_{\Gamma}$$

Auxiliary Problem for Main Task

Input
$$(G = (V, E), \ell, s, t)$$
: Original Input
P: Shortest *s*-*t* Path in *G*

<u>Goal</u> Find a shortest <u>unorthodox</u> s-t path Q in G

1. Find a shortest *s*-*t* path *P* in *G* by Dijkstra's Algorithm

- 2. If *P* is non-zero $(\psi_G(P) \neq 1_{\Gamma})$, then return *P*
- 3. Otherwise, find and return an s-t path Q in G s.t. $\ell(Q)$ is minimized subject to $\psi_G(Q) \neq \psi_G(P)$

Auxiliary Problem for Main Task

Finding a Shortest Unorthodox Path (SUP)

<u>Input</u> $(G = (V, E), \ell, s, t)$: Original Input

 $T = \bigcup_{v \in V} P_v$: Shortest Path Tree of G rooted at s

<u>Goal</u> Find a shortest **unorthodox** s-t path Q in G

- 1. Find a "NICE" non-zero cycle C ($\psi_G(C) \neq 1_{\Gamma}$)
- 2. If t is on C, then return a **Detour** Q from P_t around C
- 3. Otherwise, shrink *C* into a single vertex *b*, and recursively solve a small instance

Finding a Shortest Unorthodox Path (SUP)

 $T = \bigcup_{v \in V} P_v$: Shortest Path Tree of G rooted at s

<u>Goal</u> Find a shortest **unorthodox** s-t path Q in G

- 1. Find a "NICE" non-zero cycle C ($\psi_G(C) \neq 1_{\Gamma}$)
- 2. If t is on C, then return a **Detour** Q from P_t around C
- 3. Otherwise, shrink *C* into a single vertex *b*, and recursively solve a small instance

Finding a Shortest Unorthodox Path (SUP)

 $T = \bigcup_{v \in V} P_v$: Shortest Path Tree of G rooted at s

<u>Goal</u> Find a shortest **unorthodox** s-t path Q in G

- 1. Find a "NICE" non-zero cycle C ($\psi_G(C) \neq 1_{\Gamma}$)
- 2. If t is on C, then return a **Detour** Q from P_t around C
- 3. Otherwise, shrink *C* into a single vertex *b*, and recursively solve a small instance

Main Lemma (Informal)

<u>Lem.</u> $\exists C$: Non-zero Cycle with a vertex $b \in C$ s.t.

- For a vertex in C b, a detour Q around C is an SUP
- After shrinking *C* into *b*, **corresponding SUPs** remain Moreover, such *C* can be found in O(|E|) time

On Computational Time

<u>Lem.</u> $\exists C$: Non-zero Cycle with a vertex $b \in C$ s.t.

- For a vertex in C b, a detour Q around C is an **SUP**
- After shrinking C into b, corresponding SUPs remain Moreover, such C can be found in O(|E|) time

<u>Obs.</u> Shrinking occurs at most (|V| - 2) times

<u>Cor.</u> An SUP can be found in $O(|V| \cdot |E|)$ time (if exists)

#(vertices) is reduced

Outline

- Algorithm Framework
 - Basic Idea
 - Auxiliary Problem (Shortest Unorthodox Path)
 - Main Lemma
- Key Structure: Lowest Blossoms
 - Detour yields a Shortest Unorthodox Path (SUP)
 - Shrinking preserves SUP Problem
- Conclusion

Blossom

- **<u>Def.</u>** $T = \bigcup_{v \in V} P_v$: Shortest Path Tree of *G* rooted at *s C* is a **<u>Blossom</u>**
- $\exists e \in E T$ s.t. $C \subseteq T + e$ (i.e., C is a Fundamental Circuit)
- $\psi_G(C) \neq 1_{\Gamma} (\Leftrightarrow \psi_G(P_u * e) \neq \psi_G(P_v))$

Lowest Blossom (LB)

- **<u>Def.</u>** $T = \bigcup_{v \in V} P_v$: Shortest Path Tree of *G* rooted at *s C* is a **Lowest Blossom**
- $\exists e \in E T$ s.t. $C \subseteq T + e$ (i.e., C is a Fundamental Circuit)
- $e \in \underset{f = \{x, y\}}{\operatorname{arg\,min}} \left\{ \ell(P_x) + \ell(P_y) + \ell(f) \mid \psi_G(P_x * f) \neq \psi_G(P_y) \right\}$

Def.
$$T = \bigcup_{v \in V} P_v$$
: Shortest Path Tree of *G* rooted at *s*
C is a **Lowest Blossom**

- $\exists e \in E T$ s.t. $C \subseteq T + e$ (i.e., C is a Fundamental Circuit)
- $e \in \underset{f = \{x, y\}}{\operatorname{arg\,min}} \left\{ \ell(P_x) + \ell(P_y) + \ell(f) \mid \psi_G(P_x * f) \neq \psi_G(P_y) \right\}$

<u>Lem.</u> For C - b, every detour Q from T is an **SUP**

<u>Lem.</u> For C - b, every detour Q from T is an **SUP**

Fix an *s*-*t* path *R* with $\psi_G(R) \neq \psi_G(P_t)$

- $\exists f = \{x, y\} \in R \text{ s.t. } \psi_G(P_x * f) \neq \psi(P_y)$ $\rightarrow \ell(P_x) + \ell(P_y) + \ell(f) \geq \ell(P_t) + \ell(Q) \quad (C \text{ is an LB})$
- $\ell(R[s,x]) \ge \ell(P_x)$ (P_x is shortest)
- $\ell(R[y,t]) \ge |\ell(P_y) \ell(P_t)|$ (o/w, \exists shortcut for T)

<u>Lem.</u> For C - b, every detour Q from T is an **SUP**

Contradiction!

<u>Lem.</u> For C - b, every detour Q from T is an **SUP**

Fix an s-t path R with $\psi_G(R) \neq \psi_G(P_t)$

• $\exists f = \{x, y\} \in R \text{ s.t. } \psi_G(P_x * f) \neq \psi(P_y)$ $\rightarrow \ell(P_x) + \ell(P_y) + \ell(f) \geq \ell(P_t) + \ell(Q) \quad (C \text{ is an LB})$

<u>Lem.</u> For C - b, every detour Q from T is an **SUP**

Fix an s-t path R with $\psi_G(R) \neq \psi_G(P_t)$

- $\exists f = \{x, y\} \in R \text{ s.t. } \psi_G(P_x * f) \neq \psi(P_y)$ $\rightarrow \ell(P_x) + \ell(P_y) + \ell(f) \geq \ell(P_t) + \ell(Q) \quad (C \text{ is an LB})$
- $\ell(R[s, x]) \ge \ell(P_x)$ (P_x is shortest)
- $\ell(R[y,t]) \ge |\ell(P_y) \ell(P_t)|$ (o/w, \exists shortcut for T)

<u>Lem.</u> For C - b, every detour Q from T is an **SUP**

 $\ell(R) \ge \ell(P_x) + \ell(f) + \ell(P_y) - \ell(P_t) \ge \ell(Q)$

 $\ell(P_x) + \ell(P_y) + \ell(f) \ge \ell(P_t) + \ell(Q) \quad (C \text{ is an LB})$

- $\ell(R[s, x]) \ge \ell(P_x)$ (P_x is shortest)
- $\ell(R[y,t]) \ge |\ell(P_y) \ell(P_t)|$ (o/w, \exists shortcut for T)

Main Lemma (Informal)

<u>Lem.</u> $\exists C$: Non-zero Cycle with a vertex $b \in C$ s.t.

- ✓ For a vertex in C b, a detour Q around C is an SUP
- ? After shrinking *C* into *b*, **corresponding SUPs** remain
- ✓ Moreover, such C can be found in O(|E|) time

Lem. $\forall R$: Unorthodox s-t path in G intersecting C, $\exists R'$: Unorthodox s-t path in G s.t. $\ell(R') \leq \ell(R)$ and R' remains in a shrunk form

Lem. $\forall R$: Unorthodox s-t path in G intersecting C, $\exists R'$: Unorthodox s-t path in G s.t. $\ell(R') \leq \ell(R)$

and R' remains in a shrunk form

R: Unorthodox *s*−*t* path, *x*: Last Vertex intersecting $P_b \cup C$ <u>Case 1.</u> $x \in C - b$ (Easy) <u>Case 2.</u> $x \in P_b$ (Complicated)

Lem. $\forall R$: Unorthodox s-t path in G intersecting C, $\exists R'$: Unorthodox s-t path in G s.t. $\ell(R') \leq \ell(R)$

and R' remains in a shrunk form

R: Unorthodox s-t path, x: Last Vertex intersecting $P_b \cup C$

Case 1. $x \in C - b$ (Easy) $\psi_G(P_x * R[x,t]) \neq \psi_G(P_t)$ $\psi_G(P_x * R[x,t]) \neq \psi_G(P_t)$ $R' \coloneqq P_x * R[x,t]$ is OK $\ell(P_x) \leq \ell(R[s,x])$

Lem. $\forall R$: Unorthodox s-t path in G intersecting C, $\exists R'$: Unorthodox s-t path in G s.t. $\ell(R') \leq \ell(R)$

and R' remains in a shrunk form

R: Unorthodox s-t path, x: Last Vertex intersecting $P_b \cup C$

<u>Case 1.</u> $x \in C - b$ (Easy)

$$\psi_G(P_x * R[x,t]) = \psi_G(P_t)$$
$$\Downarrow$$
$$R' \coloneqq Q_x * R[x,t] \text{ is OK}$$

•
$$\psi_G(Q_x) \neq \psi_G(P_x) \neq \psi_G(R[s,x])$$

•
$$\ell(Q_x) \leq \ell(R[s, x])$$

Outline

- Algorithm Framework
 - Basic Idea
 - Auxiliary Problem (Shortest Unorthodox Path)
 - Main Lemma
- Key Structure: Lowest Blossoms
 - Detour yields a Shortest Unorthodox Path (SUP)
 - Shrinking preserves SUP Problem
- Conclusion

Conclusion

<u>Thm.</u> Solved by $O(|V| \cdot |E|)$ Elementary Operations

Conclusion

- **<u>Input</u>** G = (V, E): Γ -Labeled Graph (Γ : Group)
 - $\ell \in \mathbf{R}^{E}_{\geq 0}$: Edge Length, $s, t \in V$: Terminals

<u>Goal</u> Find a shortest **non-zero** *s*–*t* path *P* in *G*

<u>Thm.</u> Solved by $O(|V| \cdot |E|)$ Elementary Operations

- Dijkstra + Shrinking Lowest Blossoms
- Depending heavily on Nonnegativity of Edge Length

<u>Q. How about a general input "without Negative Cycle"</u>?
 [Unconstrained] Strongly-Poly via Weighted Matching
 [Parity Constrained] Open