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Dulmage—Mendelsohn Decomposition
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G = (V*,V~; E): Bipartite Graph
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Unique Partition of Vertex Set

reflecting Structure of Maximum Matchings



Dulmage—Mendelsohn Decomposition
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Dulmage—Mendelsohn Decomposition

Given G = (V*,V~;E): Bipartite Graph

@) @ - VMax. Matching in G is a union of
N Perfect Matchings in G[V;]

O. *, O] ~— EdgesbetweenV;andV; (i # j)
canNOT be used.

Unique Partition of Vertex Set
reflecting Structure of Maximum Matchings



Dulmage—Mendelsohn Decomposition

Given
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G = (V*,V~; E): Bipartite Graph

* YMax. Matching in G is a union of
Perfect Matchings in G|V;]

— Edges between V; and V; (i # j)
canNOT be used.

* Ve: Edgein G|V;],
JPerfect Matching in G|V;] using e

Unique Partition of Vertex Set

reflecting Structure of Maximum Matchings



DM-irreducibility

4 )
Def. A bipartite graph is DM-irreducible
g The DM-decomposition consists of a single component y
Vi
Vo
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Obs. A bipartite graph G is DM-irreducible
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Ve: Edge in G, dPerfect Matching in G using e




DM-irreducibility

( Obs. Complete bipartite graphs are DM-irreducible. J

* Connected
* Every Edge is in some Perfect Matching
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DM-irreducibility

( Obs. Complete bipartite graphs are DM-irreducible. J

* Connected
* Every Edge is in some Perfect Matching
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Complete q:é DMe-irreducible

How many additional edges are necessary
to make a bipartite graph DM-irreducible?



Our Problem

Given G = (V*,V~;E): Bipartite Graph
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Find Minimum Number of Additional Edges
to Make G DM-irreducible




Given

Our Problem

G = (V*,V~; E): Bipartite Graph

Voo
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Minimum Number of Additional Edges

to Make G DM-irreducible
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Our Result

Given G = (V*,V~;E): Bipartite Graph

Find Minimum Number of Additional Edges
to Make G DM-irreducible

[ Thm. This problem can be solved in polynomial time. ]

[l.—K.~Y. 2016]
Tools

* Finding a Maximum Matching in a Bipartite Graph
 Decomposition into Strongly Connected Components
* Making a Digraph Strongly Connected by Adding Edges

* Finding Edge-Disjoint s—t Paths in a Digraph
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Outline

* Preliminaries: How to Compute DM-decomposition

— Find a Maximum Matching in a Bipartite Graph
— Decompose a Digraph into Strongly Connected Components

e Result: How to Make a Bipartite Graph DM-irreducible

— Make a Digraph Strongly Connected
— Find Edge-Disjoint s—t Paths in a Digraph

e Conclusion
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Outline

* Preliminaries: How to Compute DM-decomposition

— Find a Maximum Matching in a Bipartite Graph
— Decompose a Digraph into Strongly Connected Components
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

A,
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

>

 Orient Edges so that
M — Both Directions <
E\M = LefttoRight -
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

V.
0 % e Orient Edges so that
M = Both Directions <
E\M = LefttoRight -
* Vy: Reachableto V™ \ 0™ M

Voo * V,: Reachable fromV* \ 0™ M
O

v+ V=
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How to Compute DM-decomposition

Given G = (V*,V~;E): Bipartite Graph

* Find a Maximum Matching M in G

e Orient Edges so that
V, M = Both Directions <
E\M = LefttoRight -

* Vy: Reachableto V™ \ 0™ M
* V,: Reachable from V* \ 0" M

* |/;: Strongly Connected Component
Of G — VO - Voo
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Outline

e Result: How to Make a Bipartite Graph DM-irreducible

— Make a Digraph Strongly Connected
— Find Edge-Disjoint s—t Paths in a Digraph
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Case Analysis

Casel. WhenV, =0 =V,

Case2. WhenV, =0 # V,

Case3. WhenV, +# 0 # V,
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Case Analysis

Casel. WhenV, =0 =1,
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Case 1. WhenVy =0 =V,

v, g><:i
Vs |H|
A g><:i
V,| O———0|

DM-decomposition

. |Vi+| = |V;7| (i #0,00)

 YMax. Matching in G is a union of
Perfect Matchings in G|V;]

\J

- [VF[ =1V
* (¢ has a Perfect Matching
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Case1l. WhenlV, =0 =V,
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DM-decomposition = Strg. Conn. Comps.




Case1l. WhenlV, =0 =V,
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DM-decomposition = Strg. Conn. Comps. —

(

Obs.

DM-irreducibility is Equivalent to
Strong Connectivity of the Oriented Graph

\

Make it Strg. Conn.
by Adding Edges

24



How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph (): Strg. Conn. Comp.

O

Find Minimum Number of Additional Edges
to Make G Strongly Connected
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph (): Strg. Conn. Comp.

Each Source needs an Entering Edge

O

Find Minimum Number of Additional Edges
to Make G Strongly Connected
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph (): Strg. Conn. Comp.

Each Source needs an Entering Edge

Each needs a

Find Minimum Number of Additional Edges
to Make G Strongly Connected
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph NOT Strg. Conn.

Find Minimum Number of Additional Edges
to Make G Strongly Connected

[Obs. max{# of Sources, # of } edges are Necessary.]

O
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph NOT Strg. Conn.

Find Minimum Number of Additional Edges
to Make G Strongly Connected

[ Obs. max{# of Sources, # of } edges are Necessary.]

é )
Thm. max{# of Sources, # of } edges are Sufficient.

N 3 Polytime Algorithm to find such Additional Edges.)

— Case 1 is Polytime Solvable.
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Case Analysis

Case 2. WhenV, =0 # I, 0——0]
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Case 2. WhenV, =@ # V,

DM-decomposition

. |Vi+| = |V;7| (i #0,00)
o |Vl > |V |

 YMax. Matching in G is a union of
Perfect Matchings in G|V;]

\J

- [VF| > [V
* ( has a Perfect Matching
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Case 2. WhenVy = 0@ + 1,

DM-decomposition Reachability from
- Exposed Vertices
_|_
Strg. Conn. Comps.
of the Rest
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Case 2. WhenVy = 0@ + 1,

DM-decomposition Reachability from
- Exposed Vertices Make ALL Vertices
- + —» Reachable from
Strg. Conn. Comps. Exposed Vertices
of the Rest by Adding Edges
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How to Achieve such Reachability

Given G = (V,E): Directed Graph, U SV

O O

Find Minimum Number of Additional Edges
to Make ALL Vertices Reachable from U

34



How to Achieve such Reachability

Given G = (V,E): Directed Graph, U SV

Each Source needs an Entering Edge O; S.C.C.

O O

Find Minimum Number of Additional Edges
to Make ALL Vertices Reachable from U
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How to Achieve such Reachability

Given G = (V,E): Directed Graph, U SV

Each Source needs an Entering Edge O; S.C.C.

/o /o

Find Minimum Number of Additional Edges
to Make ALL Vertices Reachable from U
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How to Make a Digraph Strongly Connected

Given G = (V,E): Directed Graph, U SV

Find Minimum Number of Additional Edges
to Make ALL Vertices Reachable from U

[Obs. (# of Sources) edges are Necessary and Sufficient.j

@

/0 /o
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Summary of Cases 1 and 2

Casel. |V*| = |V~]|and G has a Perfect Matching

[ OPT = max{# of Sources, # of } ]

Case 2. |V*| > |[V~|and G has a Perfect Matching

[ OPT = (# of Sources NOT Reachable from I,) ]

Case 2’. |[V*| < |[V~|and G has a Perfect Matching
| OPT = (#of )
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Case Analysis

Case3. WhenV, +# 0 # V,
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Case 3. WhenV, # @ + V,

DM-decomposition

Vol < |Vy
VYl = |V~

l l

V> |V

VMax. Matching in G is a union of
Perfect Matchings in G|V;]

(i # 0, 00)

l
( has NO Perfect Matching
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Case 3. WhenV, # @ + V,

Vol < |Vy
Vi+ — Vi_ (l +* O, OO)
o [VZ| > |V
* YMax. Matching in G is a union of

Perfect Matchings in G|V;]

\J

DM-decomposition ( has NO Perfect Matching

Idea

to Reduce to Cases 1,2 (IPerfect Matching)
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Key Observation

)
dNew Max. Matching

including the Original
J

Each Vi (l * 0, 00)
\‘ remains as it was

4

SN <

DM-decomposition

Idea
to Reduce to Cases 1,2 (IPerfect Matching)
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Case Analysis

Case3. WhenV, # @ # V,
Case3.1. |V*| =|V~|
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Case 3.1. When |[VT| = [V |

Idea
to Reduce to Case 1 (3Perfect Matching)

in @ Max. Matching M in G
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Case 3.1. When |V*| = [V |

Idea
Adding Edges to Reduce to Case 1 (IPerfect Matching)

in @ Max. Matching M in G

o~ A Rg o

V| — |M| max{# of Sources, # of }
# of Additional Edges
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Case 3.1. When |[VT| = [V |

Idea
Adding Edges to Reduce to Case 1 (IPerfect Matching)

in @ Max. Matching M in G

V| — |M| max{# of Sources, # of Sinks}
Const. # of Additional Edges Depending on M
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Sources and Sinks in Resulting Digraph

/i

Choice of M
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Sources and Sinks in Resulting Digraph

VO‘\(: v

Choice of M Orientation Simplified
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Sources and Sinks in Resulting Digraph

i ‘\\‘QO .
\‘\\ R VZ 1

Voo ‘\‘ V3 Vs
O

Choice of M Strg. Conn. Comps. Simplified

o~
oM

L
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Sources and Sinks in Resulting Digraph

Want to Minimize
”O g Vl
0’ E \ VZ

—_

O.. /5\\ V3 Vs

. B
Obs.
(# of Resulting Sources) = (# of Sources in V) + const.
L (# of ) = (# of ) + const.
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Sources and Sinks in Resulting Digraph

«— Want to Minimize

. —
— (¢
Va
f% )
(# of Sources in V) and (# of ) vary Indep.
X by choices of Perfect Matchings in G[V,] and G|V, ]. y
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How to Minimize (# of

4 )
Lem. (# of ) is NOT Minimized
X JEdge-disjoint Paths from 3() to 3 , )
[I.—K.—Y. 2016]
O: Exposed
. Sink
():Ss.Cc.C.
[ ““ )
: <>~ | Flipping .
<
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Summary of Cases 3.1

Case 3.1. |V*| = |V~| and G has NO Perfect Matching

* Connect to Make Perfect Matching
— Reduce to Case 1

( OPT = max{# of Sources, # of } J
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Summary of Cases 3.1

Case 3.1. |V*| = |V~] and G has NO Perfect Matching

* Connect to Make Perfect Matching
— Reduce to Case 1

[ OPT = max{# of Sources, # of } ]

* Minimize (# of Sources in V) and (# of ),
in Advance, by finding Edge-disjoint Paths repeatedly.
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Summary of Cases 3.1

Case 3.1. |V*| = |V~] and G has NO Perfect Matching

* Connect to Make Perfect Matching
— Reduce to Case 1

[ OPT = max{# of Sources, # of } ]

* Minimize (# of Sources in V) and (# of ),
in Advance, by finding Edge-disjoint Paths repeatedly.

[ Thm. One can find an optimal solution by this strategy.j

[.—K.=Y. 2016]
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e Conclusion

Outline

56



Conclusion

Given G = (V*,V~;E): Bipartite Graph

Find Minimum Number of Additional Edges
to Make G DM-irreducible

[ Thm. This problem can be solved in polynomial time. ]

[l.—K.~Y. 2016]
Tools

* Finding a Maximum Matching in a Bipartite Graph
 Decomposition into Strongly Connected Components
* Making a Digraph Strongly Connected by Adding Edges

* Finding Edge-Disjoint s—t Paths in a Digraph
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