Fast Algorithms for Finding a Maximum Matching —Centralized and Distributed—

Yutaro Yamaguchi (Osaka University)

WEPA 2024 2024/10/22

Maximum Matching Problem

Input: G = (V, E): Undirected Graph

Goal: Find a <u>Matching</u> $M \subseteq E$ of maximum cardinality

A set of vertex-disjoint edges

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft-Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
 - \circ O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $\circ O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi-Kitamura-Y. 2024]

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- O(n log n)-round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi-Kitamura-Y. 2024]

Maximum Matching Problem

Input: G = (V, E): Undirected Graph

Goal: Find a <u>Matching</u> $M \subseteq E$ of maximum cardinality

A set of vertex-disjoint edges

Input: G = (V, E): Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

Input: G = (V, E): Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

<u>Lem.</u> A matching *M* is not maximum $\Leftrightarrow \exists P$: **Augmenting Path** w.r.t. *M*

Input: G = (V, E): Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

$$n = |V|, \ m = |E|$$

 μ : optimal value

<u>Lem.</u> A matching *M* is not maximum $\Leftrightarrow \exists P$: **Augmenting Path** w.r.t. *M*

[Naive Algorithm]

1. $M \leftarrow \emptyset$

2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$
- $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

Orientation

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$
- $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

Orientation + BFS (DFS) is enough to find an augmenting path.

 $FP(n,m) = O(m) \rightarrow O(nm)$ time in total

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

Edmonds' Blossom Algorithm for General Matching [Edmonds 1965]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

Edmonds' Blossom Algorithm for General Matching [Edmonds 1965]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

Edmonds' Blossom Algorithm for General Matching [Edmonds 1965]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

- #(Shrink per Augment) $\leq \frac{n}{2}$
- Shrink, Expand, and BFS are done in O(m) time

 $FP(n,m) = O(nm) \rightarrow O(n^2m)$ time in total

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft-Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- O(n log n)-round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

Input: G = (V, E): Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

Length of Shortest Augmenting Paths

Input: G = (V, E): Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

$$n = |V|, m = |E|$$

 μ : optimal value

Lem. A matching *M* is of cardinality
$$\mu - k$$
 $(1 \le k \le \mu)$
 $\implies \exists P$: augmenting path w.r.t. *M* of length less than $\frac{2\mu}{k}$

[Hopcroft–Karp 1973]

In the worst case, $M \bigtriangleup M^*$ forms k disjoint augmenting paths of the same length.

Update with Maximal Shortest Augmenting Paths

Lem. *M*: matching, ℓ : length of a **shortest** augmenting path w.r.t. *M* $M \bigtriangleup M'$ forms **maximal** disjoint augmenting paths of length ℓ $\Rightarrow M'$ has no augmenting path of length at most ℓ

[Hopcroft–Karp 1973]

If some remains, a contradiction is obtained, e.g., as follows. (Informal)

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M,

find maximal disjoint shortest ones and update M with them

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find maximal disjoint shortest ones and update M with them
- The length of a shortest augmenting path monotonically increases

Lem. *M*: matching, ℓ : length of a **shortest** augmenting path w.r.t. *M* $M \bigtriangleup M'$ forms **maximal** disjoint augmenting paths of length ℓ $\Rightarrow M'$ has no augmenting path of length at most ℓ

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find maximal disjoint shortest ones and update M with them
- The length of a shortest augmenting path monotonically increases $\rightarrow \#(\text{iterations with } |M| \le \mu \sqrt{\mu}) \le \sqrt{\mu}$

<u>Lem.</u> A matching *M* is of cardinality $\mu - k$ $(1 \le k \le \mu)$

 $\Rightarrow \exists P$: augmenting path w.r.t. *M* of length less than $\frac{2\mu}{k}$

[Hopcroft–Karp 1973]

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find maximal disjoint shortest ones and update M with them
- The length of a shortest augmenting path monotonically increases $\rightarrow \#(\text{iterations with } |M| \le \mu \sqrt{\mu}) \le \sqrt{\mu}$
- Clearly, #(iterations with $|M| \ge \mu \sqrt{\mu}$) $\le \sqrt{\mu}$

 $O\left(\sqrt{\mu} \cdot FMDSP(n,m)\right)$ time in total [Hopcroft-Karp 1973] (FMDSP(·): time to find maximal disjoint shortest augmenting paths)

Maximum Matching in $O(\sqrt{n}m)$ **Time**

- $O\left(\sqrt{\mu} \cdot FMDSP(n,m)\right)$ via maximal disjoint shortest augmenting paths (FMDSP(·): time to find maximal disjoint shortest augmenting paths)
 - \rightarrow FMDSP(*n*, *m*) = O(*m*) is sufficient
- When G is bipartite, it is easy (Orientation + DFS on the DAG after BFS) [Hopcroft-Karp 1973]
- When *G* is not bipartite, it is not so easy but possible [Micali–Vazirani 1980; Vazirani 2024]
- Q. What is the essential difference?
- A. **BFS-honesty** of **Shortest Alternating Paths** (Intuitively, any prefix of a shortest path should be a shortest path.)

Maximum Matching in $O(\sqrt{n}m)$ **Time**

- $O\left(\sqrt{\mu} \cdot FMDSP(n,m)\right)$ via maximal disjoint shortest augmenting paths (FMDSP(·): time to find maximal disjoint shortest augmenting paths)
 - \rightarrow FMDSP(*n*, *m*) = O(*m*) is sufficient
- When G is bipartite, it is easy (Orientation + DFS on the DAG after BFS) [Hopcroft-Karp 1973]
- When G is not bipartite, it is not so easy but possible [Micali–Vazirani 1980; Vazirani 2024]
- Q. What is the essential difference?
- A. **BFS-honesty** of **Shortest Alternating Paths** (Intuitively, any prefix of a shortest path should be a shortest path.)

Maximum Matching in $O(\sqrt{n}m)$ **Time**

- $O\left(\sqrt{\mu} \cdot FMDSP(n,m)\right)$ via maximal disjoint shortest augmenting paths (FMDSP(·): time to find maximal disjoint shortest augmenting paths)
 - \rightarrow FMDSP(*n*, *m*) = O(*m*) is sufficient
- When G is bipartite, it is easy (Orientation + DFS on the DAG after BFS) [Hopcroft-Karp 1973]
- When G is not bipartite, it is not so easy but possible [Micali–Vazirani 1980; Vazirani 2024]
- Q. What is the essential difference?
- A. **BFS-honesty** of **Shortest Alternating Paths** (Intuitively, any prefix of a shortest path should be a shortest path.)

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- O(n log n)-round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

BFS-honesty of Shortest Alternating Paths

For each vertex $v \in V$, define the followings.

oddlevel(v): the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} maxlevel(v) = max{oddlevel(v), evenlevel(v)}

For each vertex $v \in V$, define the followings.

oddlevel(v): the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} maxlevel(v) = max{oddlevel(v), evenlevel(v)}

For each vertex $v \in V$, define the followings.

oddlevel(v): the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} maxlevel(v) = max{oddlevel(v), evenlevel(v)} (0,7) (2,5) (3,4) (1,6)

• $\ell = \min\{ \text{oddlevel}(v) \mid v \text{ is unmatched} \}$

• G is bipartite

- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
- *G* is not bipartite
 - \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel

For each vertex $v \in V$, define the followings.

oddlevel(v): the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} maxlevel(v) = max{oddlevel(v), evenlevel(v)} (0,7) (2,5) (3,4) (1,6)

- $\ell = \min\{ \text{oddlevel}(v) \mid v \text{ is unmatched} \}$
- G is bipartite
 - \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
- *G* is not bipartite
 - \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel

For each vertex $v \in V$, define the followings.

oddlevel(v): the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} (1,8) (2,7) (1,8) (1,8) (2,7) (1,8) (

- $\ell = \min\{ \text{oddlevel}(v) \mid v \text{ is unmatched} \}$
- G is bipartite
 - \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
- G is not bipartite
 - \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel

Computing Odd/Evenlevels

- *G* is bipartite
 - \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
 - All odd/evenlevels are assigned by their neighbors via BFS
 - The parity is determined by the roots of BFS (in which side of bipartition)
 - Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

Computing Odd/Evenlevels

- *G* is bipartite
 - \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
 - All odd/evenlevels are assigned by their neighbors via BFS
 - The parity is determined by the roots of BFS (in which side of bipartition)
 - Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)
- G is not bipartite
 - \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel
 - Still, all minlevels are assigned by their neighbors in a BFS-like manner
 - Who does assign maxlevels? \rightarrow Bridge!

Computing Odd/Evenlevels

- *G* is bipartite
 - \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
 - All odd/evenlevels are assigned by their neighbors via BFS
 - The parity is determined by the roots of BFS (in which side of bipartition)
 - Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)
- G is not bipartite
 - \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel
 - Still, all minlevels are assigned by their neighbors in a BFS-like manner
 - Who does assign maxlevels? \rightarrow **Bridge!**

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- O(n log n)-round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi-Kitamura-Y. 2024]

An edge e = uw is a **<u>Bridge</u>** $\stackrel{\text{def}}{\Leftrightarrow} e$ does not assign the minlevel of either vertex u or w

- When $e \in M$,
 - evenlevel(u) = maxlevel(u)
 - evenlevel(w) = maxlevel(w)
- When $e \in E \setminus M$,
 - oddlevel(u) = maxlevel(u) or oddlevel(u) < evenlevel(w) + 1
 - oddlevel(w) = maxlevel(w) or oddlevel(w) < evenlevel(u) + 1

An edge e = uw is a **<u>Bridge</u>** $\stackrel{\text{def}}{\Leftrightarrow} e$ does not assign the minlevel of either vertex u or w

- When $e \in M$,
 - evenlevel(u) = maxlevel(u)
 - evenlevel(w) = maxlevel(w)
- When $e \in E \setminus M$,
 - oddlevel(u) = maxlevel(u) or oddlevel(u) < evenlevel(w) + 1
 - oddlevel(w) = maxlevel(w) or oddlevel(w) < evenlevel(u) + 1

An edge e = uw is a **Bridge** $\stackrel{\text{def}}{\Leftrightarrow} e$ does not assign the minlevel of either vertex u or w

<u>Tenacity</u> of a bridge e = uw or a vertex $v \in V$ is defined as follows:

- tenacity(e) := $\begin{cases} \text{oddlevel}(u) + \text{oddlevel}(w) + 1 & (e \in M) \\ \text{evenlevel}(u) + \text{evenlevel}(w) + 1 & (e \in E \setminus M) \end{cases}$
- tenacity(v) := oddlevel(v) + evenlevel(v) = minlevel(v) + maxlevel(v) ($v \in V$)

Maxlevel of a vertex of tenacity t is assigned by a bridge of tenacity t

An edge e = uw is a **Bridge** $\stackrel{\text{def}}{\Leftrightarrow} e$ does not assign the minlevel of either vertex u or w

<u>Tenacity</u> of a bridge e = uw or a vertex $v \in V$ is defined as follows:

- tenacity(e) := $\begin{cases} \text{oddlevel}(u) + \text{oddlevel}(w) + 1 & (e \in M) \\ \text{evenlevel}(u) + \text{evenlevel}(w) + 1 & (e \in E \setminus M) \end{cases}$
- tenacity(v) := oddlevel(v) + evenlevel(v) = minlevel(v) + maxlevel(v) ($v \in V$)

Maxlevel of a vertex of tenacity t is assigned by a bridge of tenacity t

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

<u>Procedure MIN</u>: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order.

These are synchronized in ascending order of *i* and $\frac{t}{2}$.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

<u>Procedure MIN</u>: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order. For each $u \in V$ with odd/evenlevel(u) = i - 1 and each **consistent** neighbor w of u, if minlevel $(w) \ge i$, then update minlevel $(w) \leftarrow i$ and declare u as a **predecessor** of w.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

<u>Procedure MIN</u>: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order. For each $u \in V$ with odd/evenlevel(u) = i - 1 and each **consistent** neighbor w of u, if minlevel $(w) \ge i$, then update minlevel $(w) \leftarrow i$ and declare u as a **predecessor** of w.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order. **Procedure MAX:** Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order. For each bridge e = uw with tenacity(e) = t, by **Double Depth First Search (DDFS)**, find the **blossom** with its **bud**, or a **shortest augmenting path** when $t = \ell$. If such a path is found, recursively remove the vertices that can no longer be used.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order. **Procedure MAX:** Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order. For each bridge e = uw with tenacity(e) = t, by **Double Depth First Search (DDFS)**, find the **blossom** with its **bud**, or a **shortest augmenting path** when $t = \ell$. If such a path is found, recursively remove the vertices that can no longer be used.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order. **Procedure MAX:** Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order. For each bridge e = uw with tenacity(e) = t, by **Double Depth First Search (DDFS)**, find the **blossom** with its **bud**, or a **shortest augmenting path** when $t = \ell$. If such a path is found, recursively remove the vertices that can no longer be used.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O(m) time in each phase:

<u>Procedure MIN</u>: Find minlevels of all vertices of minlevel $i = 1, 2, ..., \frac{\ell-1}{2}$ in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order.

These are **synchronized** in ascending order of *i* and $\frac{t}{2}$.

[Remark]

- Synchronization of the two procedures is essential; intuitively, it finds minlevels and processes bridges (blossoms) in a BFS-like manner.
- Odd/evenlevel paths (also in blossoms) are recursively constructed in linear time; this part is also nontrivial due to **nested blossoms**, which are shown to be **well-structured**.

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft-Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

Distributed Situation

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message through each of its incident edges

CONGEST Model

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message of O(log n) bits through each of its incident edges in each synchronous round

Question and Trivial Upper Bound

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message of O(log n) bits through each of its incident edges in each synchronous round

Q. How many rounds are sufficient to solve a problem on the graph?

A. By deciding a leader vertex and gathering all information to it, most problems are solved in $O(m) = O(n^2)$ rounds.

Q. How faster can it be?

Question and Trivial Upper Bound

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message of O(log n) bits through each of its incident edges in each synchronous round
- Q. How many rounds are sufficient to solve a problem on the graph?
- A. By deciding a leader vertex and gathering all information to it, most problems are solved in $O(m) = O(n^2)$ rounds.

Q. How faster can it be?

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than $\Theta(n^2)$ rounds?

- $O(\mu^2)$ -round deterministic algorithm [Ben-Basat-Kawarabayashi-Schwartzman 2019]
- $O(\mu \log \mu)$ -round deterministic algorithm for bipartite graphs [Ahmadi-Kuhn-Oshman 2018]
- $O(\mu)$ -round randomized algorithm to verify maximality of a matching [Ahmadi–Kuhn 2020]
- $O(\mu^{1.5})$ -round randomized algorithm [Kitamura–Izumi 2022]
- $O(\mu \log \mu)$ -round randomized algorithm [Izumi-Kitamura-Y. 2024]

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than $\Theta(n^2)$ rounds?

- $O(\mu^2)$ -round deterministic algorithm [Ben-Basat-Kawarabayashi-Schwartzman 2019]
- $O(\mu \log \mu)$ -round deterministic algorithm for bipartite graphs [Ahmadi-Kuhn-Oshman 2018]
- $O(\mu)$ -round randomized algorithm to verify maximality of a matching [Ahmadi–Kuhn 2020]
- $O(\mu^{1.5})$ -round randomized algorithm [Kitamura-Izumi 2022]
- $O(\mu \log \mu)$ -round randomized algorithm [Izumi-Kitamura-Y. 2024]

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than $\Theta(n^2)$ rounds?

- $O(\mu^2)$ -round deterministic algorithm [Ben-Basat-Kawarabayashi-Schwartzman 2019]
- $O(\mu \log \mu)$ -round deterministic algorithm for bipartite graphs [Ahmadi-Kuhn-Oshman 2018]
- $O(\mu)$ -round randomized algorithm to verify maximality of a matching [Ahmadi-Kuhn 2020]
- $O(\mu^{1.5})$ -round randomized algorithm [Kitamura-Izumi 2022]
- $O(\mu \log \mu)$ -round randomized algorithm [Izumi-Kitamura-Y. 2024]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

- It suffices to upper-bound FP(n, m) by $O(\log \mu)$ in amortized sense.
- $FP(n,m) = O(\ell)$ is sufficient with the aid of **Hopcroft–Karp analysis**.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of Ahmadi–Kuhn Matching Verification algorithm.

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

- It suffices to upper-bound FP(n, m) by $O(\log \mu)$ in amortized sense.
- $FP(n,m) = O(\ell)$ is sufficient with the aid of **Hopcroft–Karp analysis**.

<u>Lem.</u> A matching *M* is of cardinality $\mu - k$ $(1 \le k \le \mu)$

 $\Rightarrow \exists P$: augmenting path w.r.t. *M* of length less than $\frac{2\mu}{k}$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

- It suffices to upper-bound FP(n, m) by $O(\log \mu)$ in amortized sense.
- $FP(n,m) = O(\ell)$ is sufficient with the aid of **Hopcroft–Karp analysis**.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of **Ahmadi–Kuhn Matching Verification algorithm**.

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft-Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

Matching Verification in $O(\min{\{\mu, \ell\}})$ Rounds

Input: G = (V, E): Undirected Graph, $M \subseteq E$: Matching

Goal: Do the correct one of the following two candidates:

- Determine that *M* is maximum.
- Find **a pair of end vertices** of a shortest augmenting path w.r.t. *M*, compute **odd/evenlevels** from one of the end vertices up to *ℓ*.

Matching Verification in $O(\min{\{\mu, \ell\}})$ Rounds

Input: G = (V, E): Undirected Graph, $M \subseteq E$: Matching

Goal: Do the correct one of the following two candidates:

- Determine that *M* is maximum.
- Find **a pair of end vertices** of a shortest augmenting path w.r.t. *M*, compute **odd/evenlevels** from one of the end vertices up to *ℓ*.

<u>**Thm.</u>** This problem is solved by a randomized CONGEST algorithm that terminates in $O(\mu)$ rounds (former) and in $O(\ell)$ rounds (latter)</u>

"We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to *compute* a maximum matching in time $\tilde{O}(s^*)$, where s^* is the size of a maximum matching."

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{nm})$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
 - O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $\circ O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi-Kitamura-Y. 2024]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

- It suffices to upper-bound FP(n, m) by $O(\log \mu)$ in amortized sense.
- $FP(n,m) = O(\ell)$ is sufficient with the aid of **Hopcroft–Karp analysis**.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of **Ahmadi–Kuhn Matching Verification algorithm**.

$O(\mu^{1.5})$ -round Algorithm [Kitamura-Izumi 2022]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P$: augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O(\mu \cdot FP(n,m))$ time (FP(·): time to find an augmenting path)

- It suffices to upper-bound FP(n, m) by $O(\sqrt{\mu})$ in amortized sense.
- $FP(n,m) = O(\min\{\ell^2,\mu\})$ is sufficient with the aid of **HK analysis**.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of Ahmadi–Kuhn Matching Verification algorithm.
$O(\mu^{1.5})$ -round Algorithm [Kitamura-Izumi 2022]

 $FP(n,m) = O(\min\{\ell^2, \mu\})$ is sufficient with the aid of **Hopcroft–Karp analysis**

<u>Lem.</u> A matching *M* is of cardinality $\mu - k$ $(1 \le k \le \mu)$ $\implies \exists P$: augmenting path w.r.t. *M* of length less than $\frac{2\mu}{k}$

• In the first $\mu - \sqrt{\mu}$ augmentations, use an $O(\ell^2)$ -round algorithm.

$$\sum_{k=0}^{\mu-\sqrt{\mu}} \left(\frac{2\mu}{\mu-k}\right)^2 = 4\mu^2 \sum_{j=\sqrt{\mu}}^{\mu} \left(\frac{1}{j}\right)^2 \approx 4\mu^2 \int_{\sqrt{\mu}}^{\mu} x^{-2} \mathrm{d}x \approx 4\mu^2 \cdot \frac{1}{2\sqrt{\mu}} = 2\mu^{1.5}$$

• In the last $\sqrt{\mu}$ augmentations, use an $O(\mu)$ -round algorithm.

Find Augmenting Path in $O(\min\{\ell^2,\mu\})$ Rounds [Kitamura-Izumi 2022]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

- O(l²)-round is straightforward:
 A path is constructed from one end vertex by finding a predecessor one-by-one.
- $O(\mu)$ -round is achieved by Construction of Sparse Subgraph:
 - It consists of $O(\mu)$ edges.
 - It preserves at least one **odd/even alternating paths** from one end vertex.
 - In particular, it contains an **augmenting path**.
 - \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

Find Augmenting Path in $O(\min\{\ell^2,\mu\})$ Rounds [Kitamura-Izumi 2022]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• $O(\ell^2)$ -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

- $O(\mu)$ -round is achieved by Construction of **Sparse Subgraph**:
 - It consists of $O(\mu)$ edges.
 - It preserves at least one **odd/even alternating paths** from one end vertex.
 - In particular, it contains an **augmenting path**.
 - \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

How to Reduce to $O(\ell)$ Rounds [Izumi-Kitamura-Y. 2024]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

- O(l²)-round is straightforward:
 A path is constructed from one end vertex by finding a predecessor one-by-one.
- $O(\mu)$ -round is achieved by Construction of **Sparse Subgraph**:
 - It consists of $O(\mu)$ edges.
 - It preserves at least one **odd/even alternating paths** from one end vertex.
 - In particular, it contains an **augmenting path (which can be arbitrarily long!)**.
 - \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

How to Reduce to $O(\ell)$ Rounds [Izumi-Kitamura-Y. 2024]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

- O(l²)-round is straightforward:
 A path is constructed from one end vertex by finding a predecessor one-by-one.
- $O(\ell)$ -round is achieved by Construction of **Sparse Subgraph**:
 - All the vertices are of tenacity (= oddlevel + evenlevel) at most ℓ .
 - It preserves at least one **shortest odd/even alternating paths between necessary pairs**.
 - In particular, it contains (and is enough to reconstruct) a **shortest augmenting path**.
 - \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph is constructed by getting inspiration from Micali–Vazirani algorithm!

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{nm})$ -time Algorithm (Centralized)
 - Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft-Karp 1973]
 - BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
 - Overview of $O(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
 - \circ O(n)-round Matching Verification Algorithm [Ahmadi–Kuhn 2020]
 - $\circ O(n^{1.5})$ -round Algorithm (Augmenting Path in O(n) rounds) [Kitamura–Izumi 2022]
 - $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi-Kitamura-Y. 2024]