Fast Algorithms for Finding a Maximum Matching —Centralized and Distributed—

Yutaro Yamaguchi (Osaka University)

WEPA 2024 2024/10/22

Maximum Matching Problem

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

A set of vertex-disjoint edges

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- \circ O(n log n)-round Algorithm (Augmenting Path of Length ℓ in O(ℓ) rounds) [Izumi–Kitamura–Y. 2024]

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

Maximum Matching Problem

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

A set of vertex-disjoint edges

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

Lem. A matching M is not maximum \Leftrightarrow ∃P: **Augmenting Path** w.r.t. M

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

$$
n = |V|, \ m = |E|
$$

 μ : optimal value

Lem. A matching M is not maximum \Leftrightarrow ∃P: **Augmenting Path** w.r.t. M

[Naive Algorithm]

1. $M \leftarrow \emptyset$

2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$
- $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

Orientation

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$
- $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

Orientation + BFS (DFS) is enough to find an augmenting path.

 $FP(n, m) = O(m) \rightarrow O(nm)$ time in total

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

- #(Shrink per Augment) ≤ \overline{n} 2
- Shrink, Expand, and BFS are done in $O(m)$ time

 $FP(n, m) = O(nm) \rightarrow O(n^2m)$ time in total

Outline

- · Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

Length of Shortest Augmenting Paths

Input: $G = (V, E)$: Undirected Graph

Goal: Find a **Matching** $M \subseteq E$ of maximum cardinality

$$
n = |V|, \ m = |E|
$$

$$
\mu: \text{optimal value}
$$

Lem. A matching M is of cardinality $\mu - k$ $(1 \leq k \leq \mu)$ $\Rightarrow \exists P:$ augmenting path w.r.t. M of length less than $\frac{2\mu}{k}$

[Hopcroft–Karp 1973]

In the worst case, $M \triangle M^*$ forms k disjoint augmenting paths of the same length.

Update with Maximal Shortest Augmenting Paths

Lem. M : matching, ℓ : length of a **shortest** augmenting path w.r.t. M $M \triangle M'$ forms maximal disjoint augmenting paths of length ℓ \Rightarrow M' has no augmenting path of length at most ℓ

[Hopcroft–Karp 1973]

If some remains, a contradiction is obtained, e.g., as follows. (Informal)

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M,

find maximal disjoint shortest ones and update M with them

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find maximal disjoint shortest ones and update M with them
- The length of a shortest augmenting path monotonically increases

Lem. M : matching, ℓ : length of a **shortest** augmenting path w.r.t. M $M \triangle M'$ forms **maximal** disjoint augmenting paths of length ℓ $\implies M'$ has no augmenting path of length at most ℓ

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find maximal disjoint shortest ones and update M with them
- The length of a shortest augmenting path monotonically increases \rightarrow # (iterations with $|M| \leq \mu - \sqrt{\mu}$) $\leq \sqrt{\mu}$

Lem. A matching M is of cardinality $\mu - k$ $(1 \leq k \leq \mu)$

 \Rightarrow $\exists P$: augmenting path w.r.t. M of length less than $\frac{2\mu}{k}$

[Hopcroft–Karp 1973]

[Fast Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find maximal disjoint shortest ones and update M with them
- The length of a shortest augmenting path monotonically increases \rightarrow # (iterations with $|M| \leq \mu - \sqrt{\mu}$) $\leq \sqrt{\mu}$
- Clearly, # (iterations with $|M| \ge \mu \sqrt{\mu}| \le \sqrt{\mu}$

 $O\left(\sqrt{\mu}\cdot\text{FMDSP}(n,m)\right)$ time in total [Hopcroft–Karp 1973] ($FMDSP(\cdot)$: time to find maximal disjoint shortest augmenting paths)

Maximum Matching in $O(\sqrt{n}m)$ Time

- $O\left(\sqrt{\mu}\cdot\text{FMDSP}(n,m)\right)$ via maximal disjoint shortest augmenting paths ($FMDSP(\cdot)$: time to find maximal disjoint shortest augmenting paths) \rightarrow FMDSP $(n, m) = O(m)$ is sufficient
- When G is bipartite, it is easy (Orientation $+$ DFS on the DAG after BFS) [Hopcroft–Karp 1973]
- When G is not bipartite, it is not so easy but possible [Micali–Vazirani 1980; Vazirani 2024]
- Q. What is the essential difference?
- A. **BFS-honesty** of **Shortest Alternating Paths** (Intuitively, any prefix of a shortest path should be a shortest path.)

Maximum Matching in $O(\sqrt{n}m)$ Time

- $O\left(\sqrt{\mu}\cdot\text{FMDSP}(n,m)\right)$ via maximal disjoint shortest augmenting paths ($FMDSP(\cdot)$: time to find maximal disjoint shortest augmenting paths)
	- \rightarrow FMDSP $(n, m) = O(m)$ is sufficient
- When G is bipartite, it is easy (Orientation + DFS on the DAG after BFS) [Hopcroft–Karp 1973]
- When G is not bipartite, it is not so easy but possible [Micali–Vazirani 1980; Vazirani 2024]
- Q. What is the essential difference?
- A. **BFS-honesty** of **Shortest Alternating Paths** (Intuitively, any prefix of a shortest path should be a shortest path.)

Maximum Matching in $O(\sqrt{n}m)$ Time

- $O\left(\sqrt{\mu}\cdot\text{FMDSP}(n,m)\right)$ via maximal disjoint shortest augmenting paths ($FMDSP(\cdot)$: time to find maximal disjoint shortest augmenting paths)
	- \rightarrow FMDSP $(n, m) = O(m)$ is sufficient
- When G is bipartite, it is easy (Orientation + DFS on the DAG after BFS) [Hopcroft–Karp 1973]
- When G is not bipartite, it is not so easy but possible [Micali–Vazirani 1980; Vazirani 2024]
- Q. What is the essential difference?
- A. **BFS-honesty** of **Shortest Alternating Paths** (Intuitively, any prefix of a shortest path should be a shortest path.)

Outline

- · Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

BFS-honesty of Shortest Alternating Paths

For each vertex $v \in V$, define the followings.

oddlevel (v) : the length of a shortest **odd** alternating path from an unmatched vertex evenlevel (v) : the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} $maxlevel(v) = max{oddlevel(v)}$, evenlevel(v)}

For each vertex $v \in V$, define the followings.

oddlevel (v) : the length of a shortest **odd** alternating path from an unmatched vertex evenlevel (v) : the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} $maxlevel(v) = max{oddlevel(v)}$, evenlevel(v)}

For each vertex $v \in V$, define the followings.

oddlevel (v) : the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} $maxlevel(v) = max{oddlevel(v)}$, evenlevel(v) } $(2, 5)$ $(3, 4)$ $(0, 7)$ $(1, 6)$

• $\ell = \min\{\text{ oddlevel}(v) \mid v \text{ is unmatched}\}\$

 \bullet *G* is bipartite

- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
- \bullet G is not bipartite
	- \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel

For each vertex $v \in V$, define the followings.

oddlevel (v) : the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} , 4 $(1, 6)$ $(2, 5)$ $maxlevel(v) = max{oddlevel(v)}$, evenlevel(v) }

- $\ell = \min\{\text{ oddlevel}(v) \mid v \text{ is unmatched}\}\$
- \bullet *G* is bipartite
	- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
- \bullet G is not bipartite
	- \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel

For each vertex $v \in V$, define the followings.

oddlevel (v) : the length of a shortest **odd** alternating path from an unmatched vertex evenlevel(v): the length of a shortest **even** alternating path from an unmatched vertex minlevel(v) = min{oddlevel(v), evenlevel(v)} $maxlevel(v) = max{oddlevel(v), evenlevel(v)}$ $(1, 8)$, 6

- $\ell = \min\{\text{ oddlevel}(v) \mid v \text{ is unmatched}\}\$
- \bullet *G* is bipartite
	- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
- \bullet *G* is not bipartite
	- \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel

Computing Odd/Evenlevels

- \bullet *G* is bipartite
	- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
		- All odd/evenlevels are assigned by their neighbors via BFS
		- The parity is determined by the roots of BFS (in which side of bipartition)
		- Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

Computing Odd/Evenlevels

- \bullet *G* is bipartite
	- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
		- All odd/evenlevels are assigned by their neighbors via BFS
		- The parity is determined by the roots of BFS (in which side of bipartition)
		- Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)
- \bullet *G* is not bipartite
	- \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel
		- Still, all minlevels are assigned by their neighbors in a BFS-like manner
		- Who does assign maxlevels? → **Bridge!**

Computing Odd/Evenlevels

- \bullet *G* is bipartite
	- \Rightarrow any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)
		- All odd/evenlevels are assigned by their neighbors via BFS
		- The parity is determined by the roots of BFS (in which side of bipartition)
		- Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)
- \bullet *G* is not bipartite
	- \Rightarrow a prefix of an odd/evenlevel path may not attain odd/evenlevel
		- Still, all minlevels are assigned by their neighbors in a BFS-like manner
		- Who does assign maxlevels? → **Bridge!**

Outline

- · Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

An edge $e = uw$ is a **Bridge** $\stackrel{\text{ucl}}{\iff} e$ does not assign the minlevel of either vertex u or w **def**

- When $e \in M$,
	- evenlevel(u) = maxlevel(u)
	- evenlevel (w) = maxlevel (w)
- When $e \in E \setminus M$,
	- oddlevel (u) = maxlevel (u) or oddlevel (u) < evenlevel $(w) + 1$
	- oddlevel (w) = maxlevel (w) or oddlevel (w) < evenlevel $(u) + 1$

An edge $e = uw$ is a **Bridge** $\stackrel{\text{ucl}}{\iff} e$ does not assign the minlevel of either vertex u or w **def**

- When $e \in M$,
	- evenlevel(u) = maxlevel(u)
	- evenlevel (w) = maxlevel (w)
- When $e \in E \setminus M$,
	- oddlevel(u) = maxlevel(u) or oddlevel(u) < evenlevel(w) + 1
	- oddlevel (w) = maxlevel (w) or oddlevel (w) < evenlevel (u) + 1

An edge $e = uw$ is a **Bridge** $\stackrel{\text{well}}{\iff}$ e does not assign the minlevel of either vertex u or w **def**

Tenacity of a bridge $e = uw$ or a vertex $v \in V$ is defined as follows:

- tenacity $(e) \coloneqq \{$ $odd level (u) + odd level (w) + 1$ $(e \in M)$ evenlevel(u) + evenlevel(w) + 1 ($e \in E \setminus M$
- tenacity $(v) :=$ oddlevel $(v) +$ evenlevel $(v) =$ minlevel $(v) +$ maxlevel (v) $(v \in V)$

Maxlevel of a vertex of tenacity t is assigned by a bridge of tenacity t

An edge $e = uw$ is a **Bridge** $\stackrel{\text{well}}{\iff}$ e does not assign the minlevel of either vertex u or w **def**

Tenacity of a bridge $e = uw$ or a vertex $v \in V$ is defined as follows:

- tenacity $(e) \coloneqq \{$ $odd level (u) + odd level (w) + 1$ $(e \in M)$ evenlevel(u) + evenlevel(w) + 1 ($e \in E \setminus M$
- tenacity $(v) \coloneqq$ oddlevel (v) + evenlevel (v) = minlevel (v) + maxlevel (v) $(v \in V)$

Maxlevel of a vertex of tenacity t is assigned by a bridge of tenacity t

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order.

These are synchronized in ascending order of i and $\frac{t}{2}$ 2 .

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order. For each $u \in V$ with odd/evenlevel $(u) = i - 1$ and each **consistent** neighbor w of u, if minlevel(w) $\geq i$, then update minlevel(w) $\leftarrow i$ and declare u as a **predecessor** of w .

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order. For each $u \in V$ with odd/evenlevel $(u) = i - 1$ and each **consistent** neighbor w of u, if minlevel(w) $\geq i$, then update minlevel(w) $\leftarrow i$ and declare u as a **predecessor** of w .

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order. **Procedure MAX:** Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order. For each bridge $e = uw$ with tenacity $(e) = t$, by **Double Depth First Search (DDFS)**, find the **blossom** with its **bud**, or a **shortest augmenting path** when $t = \ell$. If such a path is found, recursively remove the vertices that can no longer be used.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order. **Procedure MAX:** Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order. For each bridge $e = uw$ with tenacity $(e) = t$, by **Double Depth First Search (DDFS)**, find the **blossom** with its **bud**, or a **shortest augmenting path** when $t = \ell$. If such a path is found, recursively remove the vertices that can no longer be used.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order. **Procedure MAX:** Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order. For each bridge $e = uw$ with tenacity $(e) = t$, by **Double Depth First Search (DDFS)**, find the **blossom** with its **bud**, or a **shortest augmenting path** when $t = \ell$. If such a path is found, recursively remove the vertices that can no longer be used.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in $O(m)$ time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel $i = 1, 2, ...,$ ℓ −1 2 in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity $t = 3, 5, ..., \ell$ in this order.

These are **synchronized** in ascending order of *i* and $\frac{t}{2}$ 2 .

[Remark]

- Synchronization of the two procedures is essential; intuitively, it finds minlevels and processes bridges (blossoms) **in a BFS-like manner**.
- Odd/evenlevel paths (also in blossoms) are recursively constructed in linear time; this part is also nontrivial due to **nested blossoms**, which are shown to be **well-structured**.

Outline

- · Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds) [Izumi–Kitamura–Y. 2024]

Distributed Situation

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message through each of its incident edges

CONGEST Model

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message of $O(\log n)$ bits through each of its incident edges **in each synchronous round**

Question and Trivial Upper Bound

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message of $O(\log n)$ bits through each of its incident edges in each **synchronous round**

Q. **How many rounds** are sufficient to solve a problem on the graph?

A. By deciding a leader vertex and gathering all information to it, most problems are solved in $O(m) = O(n^2)$ rounds.

Q. How faster can it be?

Question and Trivial Upper Bound

- Computers form a communication network (graph)
- Each vertex has sufficient computational power
- Each vertex only knows the local information, itself and its neighbors
- Each vertex can send and receive a message of $O(\log n)$ bits through each of its incident edges in each **synchronous round**
- Q. **How many rounds** are sufficient to solve a problem on the graph?
- A. By deciding a leader vertex and gathering all information to it, most problems are solved in $O(m) = O(n^2)$ rounds.

Q. How faster can it be?

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than $\Theta(n^2)$ **rounds?**

- $O(\mu^2)$ -round deterministic algorithm [Ben-Basat-Kawarabayashi-Schwartzman 2019]
- $O(\mu \log \mu)$ -round deterministic algorithm for bipartite graphs [Ahmadi–Kuhn–Oshman 2018]
- $O(\mu)$ -round randomized algorithm to verify maximality of a matching [Ahmadi–Kuhn 2020]
- $O(\mu^{1.5})$ -round randomized algorithm [Kitamura-Izumi 2022]
- $O(\mu \log \mu)$ -round randomized algorithm [Izumi-Kitamura-Y. 2024]

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than $\Theta(n^2)$ **rounds?**

- $O(\mu^2)$ -round deterministic algorithm [Ben-Basat-Kawarabayashi-Schwartzman 2019]
- $O(\mu \log \mu)$ -round deterministic algorithm for bipartite graphs [Ahmadi–Kuhn–Oshman 2018]
- $O(\mu)$ -round randomized algorithm to verify maximality of a matching [Ahmadi–Kuhn 2020]
- $O(\mu^{1.5})$ -round randomized algorithm [Kitamura-Izumi 2022]
- $O(\mu \log \mu)$ -round randomized algorithm [Izumi-Kitamura–Y. 2024]

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than $\Theta(n^2)$ **rounds?**

- $O(\mu^2)$ -round deterministic algorithm [Ben-Basat-Kawarabayashi-Schwartzman 2019]
- $O(\mu \log \mu)$ -round deterministic algorithm for bipartite graphs [Ahmadi–Kuhn–Oshman 2018]
- $O(\mu)$ -round randomized algorithm to verify maximality of a matching [Ahmadi–Kuhn 2020]
- $O(\mu^{1.5})$ -round randomized algorithm [Kitamura-Izumi 2022]
- $O(\mu \log \mu)$ -round randomized algorithm [Izumi–Kitamura–Y. 2024]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

- It suffices to upper-bound $FP(n, m)$ by $O(log \mu)$ in amortized sense.
- $FP(n, m) = O(\ell)$ is sufficient with the aid of **Hopcroft–Karp analysis.**
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of **Ahmadi–Kuhn Matching Verification algorithm**.

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

- It suffices to upper-bound $FP(n, m)$ by $O(log \mu)$ in amortized sense.
- $FP(n, m) = O(\ell)$ is sufficient with the aid of **Hopcroft-Karp analysis**.

Lem. A matching M is of cardinality $\mu - k$ $(1 \leq k \leq \mu)$

 \Rightarrow $\exists P$: augmenting path w.r.t. M of length less than $\frac{2\mu}{l}$ \boldsymbol{k}

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

- It suffices to upper-bound $FP(n, m)$ by $O(log \mu)$ in amortized sense.
- FP $(n, m) = O(\ell)$ is sufficient with the aid of **Hopcroft-Karp analysis**.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of **Ahmadi–Kuhn Matching Verification algorithm**.

Outline

- · Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- [Izumi–Kitamura–Y. 2024] • $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds)

Matching Verification in $O(\min{\{\mu, \ell\}})$ Rounds [Ahmadi–Kuhn 2020]

Input: $G = (V, E)$: Undirected Graph, $M \subseteq E$: Matching

Goal: Do the correct one of the following two candidates:

- Determine that M is maximum.
- Find a pair of end vertices of a shortest augmenting path w.r.t. M, compute **odd/evenlevels** from one of the end vertices up to ℓ.

Matching Verification in $O(\min{\{\mu, \ell\}})$ Rounds [Ahmadi–Kuhn 2020]

Input: $G = (V, E)$: Undirected Graph, $M \subseteq E$: Matching

Goal: Do the correct one of the following two candidates:

- Determine that M is maximum.
- Find a pair of end vertices of a shortest augmenting path w.r.t. M, compute **odd/evenlevels** from one of the end vertices up to ℓ.

Thm. This problem is solved by a randomized CONGEST algorithm that terminates in $O(\mu)$ rounds (former) and in $O(\ell)$ rounds (latter)

"We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to *compute* a maximum matching in time $\tilde{O}(s^*)$, where s^* is the size of a maximum matching."

Outline

- · Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- [Izumi–Kitamura–Y. 2024] • $O(n \log n)$ -round Algorithm (Augmenting Path of Length ℓ in $O(\ell)$ rounds)

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

- It suffices to upper-bound $FP(n, m)$ by $O(log \mu)$ in amortized sense.
- FP $(n, m) = O(\ell)$ is sufficient with the aid of **Hopcroft-Karp analysis**.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of **Ahmadi–Kuhn Matching Verification algorithm**.

$O(\mu^{1.5})$ -round Algorithm [Kitamura–Izumi 2022]

[Naive Algorithm]

- 1. $M \leftarrow \emptyset$
- 2. While $\exists P:$ augmenting path w.r.t. M, find it and update $M \leftarrow M \bigtriangleup P$

 $O((\mu \cdot FP(n,m))$ time (FP(\cdot): time to find an augmenting path)

- It suffices to upper-bound $FP(n, m)$ by $O(\sqrt{\mu})$ in amortized sense.
- FP $(n, m) = O(\min{\lbrace \ell^2, \mu \rbrace})$ is sufficient with the aid of HK analysis.
- We can restrict a situation (with end vertices and odd/evenlevels known) with the aid of **Ahmadi–Kuhn Matching Verification algorithm**.
$O(\mu^{1.5})$ -round Algorithm [Kitamura–Izumi 2022]

 $FP(n, m) = O(min\{\ell^2, \mu\})$ is sufficient with the aid of **Hopcroft-Karp analysis**

Lem. A matching *M* is of cardinality $\mu - k$ ($1 \leq k \leq \mu$) \Rightarrow $\exists P$: augmenting path w.r.t. M of length less than $\frac{2\mu}{I}$ \boldsymbol{k}

• In the first $\mu - \sqrt{\mu}$ augmentations, use an $O(\ell^2)$ -round algorithm.

$$
\sum_{k=0}^{\mu-\sqrt{\mu}} \left(\frac{2\mu}{\mu-k}\right)^2 = 4\mu^2 \sum_{j=\sqrt{\mu}}^{\mu} \left(\frac{1}{j}\right)^2 \approx 4\mu^2 \int_{\sqrt{\mu}}^{\mu} x^{-2} dx \approx 4\mu^2 \cdot \frac{1}{2\sqrt{\mu}} = 2\mu^{1.5}
$$

• In the last $\sqrt{\mu}$ augmentations, use an $O(\mu)$ -round algorithm.

Find Augmenting Path in $O(\min\{\ell^2, \mu\})$ Rounds $\frac{2}{\pi}$ imi 2022]

Both algorithms are based on **Ahmadi–Kuhn Matching Verification**

- $O(\ell^2)$ -round is straightforward: A path is constructed from one end vertex by finding a predecessor one-by-one.
- $O(\mu)$ -round is achieved by Construction of **Sparse Subgraph**:
	- It consists of $O(\mu)$ edges.
	- It preserves at least one **odd/even alternating paths** from one end vertex.
	- In particular, it contains an **augmenting path**.
	- \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

Find Augmenting Path in $O(\min\{\ell^2, \mu\})$ Rounds $\overline{\mathsf{m}}$ imi 2022]

Both algorithms are based on **Ahmadi–Kuhn Matching Verification**

• $O(\ell^2)$ -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

- $O(\mu)$ -round is achieved by Construction of **Sparse Subgraph**:
	- ∘ It consists of $O(\mu)$ edges.
	- It preserves at least one **odd/even alternating paths** from one end vertex.
	- In particular, it contains an **augmenting path**.
	- \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

How to Reduce to $O(\ell)$ **Rounds** [Izumi–Kitamura–Y. 2024]

Both algorithms are based on **Ahmadi–Kuhn Matching Verification**

- $O(\ell^2)$ -round is straightforward: A path is constructed from one end vertex by finding a predecessor one-by-one.
- $O(\mu)$ -round is achieved by Construction of **Sparse Subgraph**:
	- ∘ It consists of $O(\mu)$ edges.
	- It preserves at least one **odd/even alternating paths** from one end vertex.
	- In particular, it contains an **augmenting path (which can be arbitrarily long!)**.
	- \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

How to Reduce to $O(\ell)$ **Rounds** [Izumi–Kitamura–Y. 2024]

Both algorithms are based on **Ahmadi–Kuhn Matching Verification**

- $O(\ell^2)$ -round is straightforward: A path is constructed from one end vertex by finding a predecessor one-by-one.
- O(ℓ)-round is achieved by Construction of **Sparse Subgraph**:
	- All the vertices are of tenacity (= oddlevel + evenlevel) at most ℓ .
	- It preserves at least one **shortest odd/even alternating paths between necessary pairs**.
	- In particular, it contains (and is enough to reconstruct) a **shortest augmenting path**.
	- \rightarrow Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph is constructed by getting inspiration from Micali–Vazirani algorithm!

Outline

- Basics: Augmenting Paths and Algorithm Framework [Kőnig 1931; Edmonds 1965]
- $O(\sqrt{n}m)$ -time Algorithm (Centralized)
	- Update with Maximal Disjoint Shortest Augmenting Paths [Hopcroft–Karp 1973]
	- BFS-honesty of Shortest Alternating Paths: Bipartite vs. General
	- $\,\circ\,$ Overview of $\mathrm{O}(\sqrt{n}m)$ -time Algorithm in General [Micali–Vazirani 1980; Vazirani 2024]
- $O(n \log n)$ -round Algorithm under CONGEST Model (Distributed)
	- \circ $O(n)$ -round Matching Verification Algorithm [Ahmadi-Kuhn 2020]
	- $O(n^{1.5})$ -round Algorithm (Augmenting Path in $O(n)$ rounds) [Kitamura–Izumi 2022]
	- [Izumi–Kitamura–Y. 2024] \circ O(n log n)-round Algorithm (Augmenting Path of Length ℓ in O(ℓ) rounds)