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Maximum Matching Problem

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

A set of vertex-disjoint edges



Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm  (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model  (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm  (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm  (Augmenting Path of Length ℓ in O ℓ rounds)
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[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]
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Maximum Matching Problem

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

A set of vertex-disjoint edges



Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is not maximum  ⟺  ∃𝑃: Augmenting Path w.r.t. 𝑀

Augment

𝑀



Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is not maximum  ⟺  ∃𝑃: Augmenting Path w.r.t. 𝑀

𝑀△𝑀∗ 𝑀∗: maximum
= 𝑀 ∖𝑀∗ ∪ 𝑀∗ ∖ 𝑀



Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

Lem. A matching 𝑀 is not maximum  ⟺  ∃𝑃: Augmenting Path w.r.t. 𝑀

𝑛 = 𝑉 , 𝑚 = 𝐸  

𝜇: optimal value



Augmenting Path Algorithm for Bipartite Matching

[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

[Kőnig 1931]

Augment



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

Augment

Augmenting Path Algorithm for Bipartite Matching
[Kőnig 1931]

Orientation



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

Augment

Augmenting Path Algorithm for Bipartite Matching
[Kőnig 1931]

Reachability



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

Orientation + BFS (DFS) is enough to find an augmenting path.

FP 𝑛,𝑚 = O(𝑚) → O 𝑛𝑚  time in total

Augmenting Path Algorithm for Bipartite Matching
[Kőnig 1931]



Edmonds' Blossom Algorithm for General Matching

[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

[Edmonds 1965]

Augment



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

𝑠

Augment

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Alternating BFS



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

We can leave from any vertex

𝑠 Blossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Alternating BFS



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

𝑠 𝑠

Shrink

Blossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Alternating BFS



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

𝑠𝑠

Shrink Blossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]



[Naive Algorithm]
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2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

𝑠𝑠

ShrinkBlossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]



[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

𝑠

Expand

𝑠

Augmenting Path
Augmenting Path

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]
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[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

• #(Shrink per Augment) ≤
𝑛

2

• Shrink, Expand, and BFS are done in O 𝑚  time

FP 𝑛,𝑚 = O(𝑛𝑚) → O 𝑛2𝑚  time in total

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]



Outline
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◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model  (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm  (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm  (Augmenting Path of Length ℓ in O ℓ rounds)
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Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is not maximum  ⟺  ∃𝑃: Augmenting Path w.r.t. 𝑀

Augment

𝑀



Length of Shortest Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

𝑛 = 𝑉 , 𝑚 = 𝐸  

𝜇: optimal value

[Hopcroft–Karp 1973]

In the worst case, 𝑀△𝑀∗ forms 𝑘 disjoint augmenting paths of the same length.



Update with Maximal Shortest Augmenting Paths

Lem. 𝑀: matching,  ℓ: length of a shortest augmenting path w.r.t. 𝑀

𝑀△𝑀′ forms maximal disjoint augmenting paths of length ℓ

⟹ 𝑀′ has no augmenting path of length at most ℓ

If some remains, a contradiction is obtained, e.g., as follows.  (Informal)

∃augmenting path in 𝑀△𝑀′

of length exactly ℓ
at most ℓ either is shorter than ℓ

[Hopcroft–Karp 1973]

𝑀′ 𝑀 𝑀



Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them



Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

• The length of a shortest augmenting path monotonically increases

Lem. 𝑀: matching,  ℓ: length of a shortest augmenting path w.r.t. 𝑀

𝑀△𝑀′ forms maximal disjoint augmenting paths of length ℓ

⟹ 𝑀′ has no augmenting path of length at most ℓ

[Hopcroft–Karp 1973]



Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

• The length of a shortest augmenting path monotonically increases

→ # iterations with 𝑀 ≤ 𝜇 − 𝜇 ≤ 𝜇

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

[Hopcroft–Karp 1973]



Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

• The length of a shortest augmenting path monotonically increases

→ # iterations with 𝑀 ≤ 𝜇 − 𝜇 ≤ 𝜇

• Clearly, # iterations with 𝑀 ≥ 𝜇 − 𝜇 ≤ 𝜇

O 𝜇 ⋅ FMDSP 𝑛,𝑚  time in total

( FMDSP ⋅ : time to find maximal disjoint shortest augmenting paths)

[Hopcroft–Karp 1973]



Maximum Matching in O( 𝑛𝑚) Time

O 𝜇 ⋅ FMDSP 𝑛,𝑚 via maximal disjoint shortest augmenting paths

( FMDSP ⋅ : time to find maximal disjoint shortest augmenting paths)

→ FMDSP 𝑛,𝑚 = O 𝑚 is sufficient

• When 𝐺 is bipartite, it is easy (Orientation + DFS on the DAG after BFS)

• When 𝐺 is not bipartite, it is not so easy but possible

Q.  What is the essential difference?

A.  BFS-honesty of Shortest Alternating Paths
(Intuitively, any prefix of a shortest path should be a shortest path.)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]
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BFS-honesty of Shortest Alternating Paths

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣
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BFS-honesty of Shortest Alternating Paths

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣
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For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

• ℓ = min oddlevel 𝑣 𝑣 is unmatched

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

BFS-honesty of Shortest Alternating Paths
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For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

• ℓ = min oddlevel 𝑣 𝑣 is unmatched

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

BFS-honesty of Shortest Alternating Paths
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For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

• ℓ = min oddlevel 𝑣 𝑣 is unmatched

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

BFS-honesty of Shortest Alternating Paths
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2, 𝟕
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3, 4
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• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

◦ All odd/evenlevels are assigned by their neighbors via BFS

◦ The parity is determined by the roots of BFS (in which side of bipartition)

◦ Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

Computing Odd/Evenlevels
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• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

◦ All odd/evenlevels are assigned by their neighbors via BFS

◦ The parity is determined by the roots of BFS (in which side of bipartition)

◦ Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

◦ Still, all minlevels are assigned by their neighbors in a BFS-like manner

◦ Who does assign maxlevels? → Bridge!

Computing Odd/Evenlevels



• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

◦ All odd/evenlevels are assigned by their neighbors via BFS

◦ The parity is determined by the roots of BFS (in which side of bipartition)

◦ Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

◦ Still, all minlevels are assigned by their neighbors in a BFS-like manner

◦ Who does assign maxlevels? → Bridge!

Computing Odd/Evenlevels
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An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

• When 𝑒 ∈ 𝑀,

◦ evenlevel 𝑢 = maxlevel 𝑢

◦ evenlevel 𝑤 = maxlevel 𝑤

• When 𝑒 ∈ 𝐸 ∖ 𝑀,

◦ oddlevel 𝑢 = maxlevel 𝑢 or  oddlevel 𝑢 < evenlevel 𝑤 + 1

◦ oddlevel 𝑤 = maxlevel 𝑤 or  oddlevel 𝑤 < evenlevel 𝑢 + 1

Bridges and Tenacity
def
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An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

• When 𝑒 ∈ 𝑀,

◦ evenlevel 𝑢 = maxlevel 𝑢

◦ evenlevel 𝑤 = maxlevel 𝑤

• When 𝑒 ∈ 𝐸 ∖ 𝑀,
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An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

Tenacity of a bridge 𝑒 = 𝑢𝑤 or a vertex 𝑣 ∈ 𝑉 is defined as follows:

• tenacity 𝑒 ≔ ቊ
oddlevel 𝑢 + oddlevel 𝑤 + 1 𝑒 ∈ 𝑀
evenlevel 𝑢 + evenlevel 𝑤 + 1 𝑒 ∈ 𝐸 ∖ 𝑀

• tenacity 𝑣 ≔ oddlevel 𝑣 + evenlevel 𝑣 = minlevel 𝑣 + maxlevel 𝑣 𝑣 ∈ 𝑉

Maxlevel of a vertex of tenacity 𝑡 is assigned by a bridge of tenacity 𝑡

Bridges and Tenacity
def
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An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

Tenacity of a bridge 𝑒 = 𝑢𝑤 or a vertex 𝑣 ∈ 𝑉 is defined as follows:

• tenacity 𝑒 ≔ ቊ
oddlevel 𝑢 + oddlevel 𝑤 + 1 𝑒 ∈ 𝑀
evenlevel 𝑢 + evenlevel 𝑤 + 1 𝑒 ∈ 𝐸 ∖ 𝑀

• tenacity 𝑣 ≔ oddlevel 𝑣 + evenlevel 𝑣 = minlevel 𝑣 + maxlevel 𝑣 𝑣 ∈ 𝑉

Maxlevel of a vertex of tenacity 𝑡 is assigned by a bridge of tenacity 𝑡
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def
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O 𝑛𝑚 -time Algorithm for General Matching

Do the following in O 𝑚 time in each phase:

Procedure MIN:  Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

These are synchronized in ascending order of 𝑖 and 
𝑡

2
.

[Micali–Vazirani 1980; Vazirani 2024]



Do the following in O 𝑚 time in each phase:
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ℓ−1

2
in this order.

For each 𝑢 ∈ 𝑉 with Τodd evenlevel 𝑢 = 𝑖 − 1 and each consistent neighbor 𝑤 of 𝑢,

if minlevel 𝑤 ≥ 𝑖, then update minlevel 𝑤 ← 𝑖 and declare 𝑢 as a predecessor of 𝑤.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]
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For each 𝑢 ∈ 𝑉 with Τodd evenlevel 𝑢 = 𝑖 − 1 and each consistent neighbor 𝑤 of 𝑢,
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Do the following in O 𝑚 time in each phase:

Procedure MIN:  Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

For each bridge 𝑒 = 𝑢𝑤 with tenacity 𝑒 = 𝑡, by Double Depth First Search (DDFS),

find the blossom with its bud, or a shortest augmenting path when 𝑡 = ℓ.

If such a path is found, recursively remove the vertices that can no longer be used.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]
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Procedure MIN:  Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

For each bridge 𝑒 = 𝑢𝑤 with tenacity 𝑒 = 𝑡, by Double Depth First Search (DDFS),

find the blossom with its bud, or a shortest augmenting path when 𝑡 = ℓ.

If such a path is found, recursively remove the vertices that can no longer be used.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]
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Do the following in O 𝑚 time in each phase:

Procedure MIN:  Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

For each bridge 𝑒 = 𝑢𝑤 with tenacity 𝑒 = 𝑡, by Double Depth First Search (DDFS),

find the blossom with its bud, or a shortest augmenting path when 𝑡 = ℓ.

If such a path is found, recursively remove the vertices that can no longer be used.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]
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Do the following in O 𝑚 time in each phase:

Procedure MIN:  Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

These are synchronized in ascending order of 𝑖 and 
𝑡

2
.

[Remark]

• Synchronization of the two procedures is essential;

intuitively, it finds minlevels and processes bridges (blossoms) in a BFS-like manner.

• Odd/evenlevel paths (also in blossoms) are recursively constructed in linear time;

this part is also nontrivial due to nested blossoms, which are shown to be well-structured.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]
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Distributed Situation

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message
through each of its incident edges



CONGEST Model

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message of O log 𝑛 bits
through each of its incident edges in each synchronous round



Question and Trivial Upper Bound

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message of O log 𝑛 bits
through each of its incident edges in each synchronous round

Q.  How many rounds are sufficient to solve a problem on the graph?

A.  By deciding a leader vertex and gathering all information to it,
most problems are solved in O 𝑚 = O 𝑛2  rounds.

Q.  How faster can it be?
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Exact Algorithms for Maximum Matching

Q.  How faster can we find a maximum matching than Θ 𝑛2 rounds?

• O 𝜇2 -round deterministic algorithm   [Ben-Basat–Kawarabayashi–Schwartzman 2019]

• O 𝜇 log 𝜇 -round deterministic algorithm for bipartite graphs
[Ahmadi–Kuhn–Oshman 2018]

• O 𝜇 -round randomized algorithm to verify maximality of a matching
[Ahmadi–Kuhn 2020]

• O 𝜇1.5 -round randomized algorithm   [Kitamura–Izumi 2022]

• O 𝜇 log 𝜇 -round randomized algorithm   [Izumi–Kitamura–Y. 2024]

𝜇 = O 𝑛 : opt. value
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[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O log 𝜇  in amortized sense.

• FP 𝑛,𝑚 = O ℓ is sufficient with the aid of Hopcroft–Karp analysis.

• We can restrict a situation (with end vertices and odd/evenlevels known)

with the aid of Ahmadi–Kuhn Matching Verification algorithm.

Road to O 𝜇 log 𝜇 -round Algorithm [Izumi–Kitamura–Y. 2024]
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• FP 𝑛,𝑚 = O ℓ is sufficient with the aid of Hopcroft–Karp analysis.

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

Road to O 𝜇 log 𝜇 -round Algorithm [Izumi–Kitamura–Y. 2024]
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Matching Verification in O min {𝜇, ℓ} Rounds
[Ahmadi–Kuhn 2020]

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph,  𝑀 ⊆ 𝐸: Matching

Goal: Do the correct one of the following two candidates:

• Determine that 𝑀 is maximum.

• Find a pair of end vertices of a shortest augmenting path w.r.t. 𝑀,
compute odd/evenlevels from one of the end vertices up to ℓ.
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Matching Verification in O min {𝜇, ℓ} Rounds
[Ahmadi–Kuhn 2020]

Thm. This problem is solved by a randomized CONGEST algorithm

that terminates in O 𝜇  rounds (former) and in O ℓ rounds (latter)

"We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm
to compute a maximum matching in time ෨𝑂 𝑠∗ , where 𝑠∗ is the size of a maximum matching."

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph,  𝑀 ⊆ 𝐸: Matching

Goal: Do the correct one of the following two candidates:

• Determine that 𝑀 is maximum.

• Find a pair of end vertices of a shortest augmenting path w.r.t. 𝑀,
compute odd/evenlevels from one of the end vertices up to ℓ.
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[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O log 𝜇  in amortized sense.
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O 𝜇1.5 -round Algorithm [Kitamura–Izumi 2022]

[Naive Algorithm]

1.  𝑀 ← ∅

2.  While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚  time ( FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O 𝜇  in amortized sense.

• FP 𝑛,𝑚 = O min ℓ2, 𝜇 is sufficient with the aid of HK analysis.

• We can restrict a situation (with end vertices and odd/evenlevels known)

with the aid of Ahmadi–Kuhn Matching Verification algorithm.



O 𝜇1.5 -round Algorithm [Kitamura–Izumi 2022]

FP 𝑛,𝑚 = O min ℓ2, 𝜇 is sufficient with the aid of Hopcroft–Karp analysis

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

• In the first 𝜇 − 𝜇 augmentations, use an O ℓ2 -round algorithm.

෍

𝑘=0

𝜇− 𝜇
2𝜇

𝜇 − 𝑘

2

= 4𝜇2 ෍

𝑗= 𝜇

𝜇
1

𝑗

2

≈ 4𝜇2න
𝜇

𝜇

𝑥−2d𝑥 ≈ 4𝜇2 ⋅
1

2 𝜇
= 2𝜇1.5

• In the last 𝜇 augmentations, use an O 𝜇 -round algorithm.



Find Augmenting Path in O min ℓ2, 𝜇 Rounds
[Kitamura–Izumi 2022]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O 𝜇 -round is achieved by Construction of Sparse Subgraph:

◦ It consists of O 𝜇 edges.

◦ It preserves at least one odd/even alternating paths from one end vertex.

◦ In particular, it contains an augmenting path.

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!
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How to Reduce to O ℓ Rounds

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O 𝜇 -round is achieved by Construction of Sparse Subgraph:

◦ It consists of O 𝜇 edges.

◦ It preserves at least one odd/even alternating paths from one end vertex.

◦ In particular, it contains an augmenting path (which can be arbitrarily long!).

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

[Izumi–Kitamura–Y. 2024]



How to Reduce to O ℓ Rounds

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O ℓ -round is achieved by Construction of Sparse Subgraph:

◦ All the vertices are of tenacity (= oddlevel + evenlevel) at most ℓ.

◦ It preserves at least one shortest odd/even alternating paths between necessary pairs.

◦ In particular, it contains (and is enough to reconstruct) a shortest augmenting path.

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph is constructed by getting inspiration from Micali–Vazirani algorithm!

[Izumi–Kitamura–Y. 2024]



[Izumi–Kitamura–Y. 2024]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm  (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model  (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm  (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm  (Augmenting Path of Length ℓ in O ℓ rounds)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]
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