
Fast Algorithms for Finding a Maximum Matching

—Centralized and Distributed—

Yutaro Yamaguchi (Osaka University)

WEPA 2024 2024/10/22

Maximum Matching Problem

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

A set of vertex-disjoint edges

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)
[Izumi–Kitamura–Y. 2024]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

[Hopcroft–Karp 1973]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)
[Izumi–Kitamura–Y. 2024]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

[Hopcroft–Karp 1973]

Maximum Matching Problem

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

A set of vertex-disjoint edges

Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is not maximum ⟺ ∃𝑃: Augmenting Path w.r.t. 𝑀

Augment

𝑀

Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is not maximum ⟺ ∃𝑃: Augmenting Path w.r.t. 𝑀

𝑀△𝑀∗ 𝑀∗: maximum
= 𝑀 ∖𝑀∗ ∪ 𝑀∗ ∖ 𝑀

Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

Lem. A matching 𝑀 is not maximum ⟺ ∃𝑃: Augmenting Path w.r.t. 𝑀

𝑛 = 𝑉 , 𝑚 = 𝐸

𝜇: optimal value

Augmenting Path Algorithm for Bipartite Matching

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

[Kőnig 1931]

Augment

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

Augment

Augmenting Path Algorithm for Bipartite Matching
[Kőnig 1931]

Orientation

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

Augment

Augmenting Path Algorithm for Bipartite Matching
[Kőnig 1931]

Reachability

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

Orientation + BFS (DFS) is enough to find an augmenting path.

FP 𝑛,𝑚 = O(𝑚) → O 𝑛𝑚 time in total

Augmenting Path Algorithm for Bipartite Matching
[Kőnig 1931]

Edmonds' Blossom Algorithm for General Matching

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

[Edmonds 1965]

Augment

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠

Augment

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Alternating BFS

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

We can leave from any vertex

𝑠 Blossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Alternating BFS

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠 𝑠

Shrink

Blossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Alternating BFS

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠𝑠

Shrink Blossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠𝑠

ShrinkBlossom

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠

Expand

𝑠

Augmenting Path
Augmenting Path

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠𝑠
Augmenting Path Augmenting Path

Expand

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠 𝑠
Augmenting Path

Augmenting Path

Expand

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

𝑠

Augment

Augmenting Path

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

• #(Shrink per Augment) ≤
𝑛

2

• Shrink, Expand, and BFS are done in O 𝑚 time

FP 𝑛,𝑚 = O(𝑛𝑚) → O 𝑛2𝑚 time in total

Edmonds' Blossom Algorithm for General Matching
[Edmonds 1965]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)
[Izumi–Kitamura–Y. 2024]

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is not maximum ⟺ ∃𝑃: Augmenting Path w.r.t. 𝑀

Augment

𝑀

Length of Shortest Augmenting Paths

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph

Goal: Find a Matching 𝑀 ⊆ 𝐸 of maximum cardinality

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

𝑛 = 𝑉 , 𝑚 = 𝐸

𝜇: optimal value

[Hopcroft–Karp 1973]

In the worst case, 𝑀△𝑀∗ forms 𝑘 disjoint augmenting paths of the same length.

Update with Maximal Shortest Augmenting Paths

Lem. 𝑀: matching, ℓ: length of a shortest augmenting path w.r.t. 𝑀

𝑀△𝑀′ forms maximal disjoint augmenting paths of length ℓ

⟹ 𝑀′ has no augmenting path of length at most ℓ

If some remains, a contradiction is obtained, e.g., as follows. (Informal)

∃augmenting path in 𝑀△𝑀′

of length exactly ℓ
at most ℓ either is shorter than ℓ

[Hopcroft–Karp 1973]

𝑀′ 𝑀 𝑀

Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

• The length of a shortest augmenting path monotonically increases

Lem. 𝑀: matching, ℓ: length of a shortest augmenting path w.r.t. 𝑀

𝑀△𝑀′ forms maximal disjoint augmenting paths of length ℓ

⟹ 𝑀′ has no augmenting path of length at most ℓ

[Hopcroft–Karp 1973]

Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

• The length of a shortest augmenting path monotonically increases

→ # iterations with 𝑀 ≤ 𝜇 − 𝜇 ≤ 𝜇

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

[Hopcroft–Karp 1973]

Fast Algorithm for Maximum Matching Problem

[Fast Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀,
find maximal disjoint shortest ones and update 𝑀 with them

• The length of a shortest augmenting path monotonically increases

→ # iterations with 𝑀 ≤ 𝜇 − 𝜇 ≤ 𝜇

• Clearly, # iterations with 𝑀 ≥ 𝜇 − 𝜇 ≤ 𝜇

O 𝜇 ⋅ FMDSP 𝑛,𝑚 time in total

(FMDSP ⋅ : time to find maximal disjoint shortest augmenting paths)

[Hopcroft–Karp 1973]

Maximum Matching in O(𝑛𝑚) Time

O 𝜇 ⋅ FMDSP 𝑛,𝑚 via maximal disjoint shortest augmenting paths

(FMDSP ⋅ : time to find maximal disjoint shortest augmenting paths)

→ FMDSP 𝑛,𝑚 = O 𝑚 is sufficient

• When 𝐺 is bipartite, it is easy (Orientation + DFS on the DAG after BFS)

• When 𝐺 is not bipartite, it is not so easy but possible

Q. What is the essential difference?

A. BFS-honesty of Shortest Alternating Paths
(Intuitively, any prefix of a shortest path should be a shortest path.)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

Maximum Matching in O(𝑛𝑚) Time

O 𝜇 ⋅ FMDSP 𝑛,𝑚 via maximal disjoint shortest augmenting paths

(FMDSP ⋅ : time to find maximal disjoint shortest augmenting paths)

→ FMDSP 𝑛,𝑚 = O 𝑚 is sufficient

• When 𝐺 is bipartite, it is easy (Orientation + DFS on the DAG after BFS)

• When 𝐺 is not bipartite, it is not so easy but possible

Q. What is the essential difference?

A. BFS-honesty of Shortest Alternating Paths
(Intuitively, any prefix of a shortest path should be a shortest path.)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

Maximum Matching in O(𝑛𝑚) Time

O 𝜇 ⋅ FMDSP 𝑛,𝑚 via maximal disjoint shortest augmenting paths

(FMDSP ⋅ : time to find maximal disjoint shortest augmenting paths)

→ FMDSP 𝑛,𝑚 = O 𝑚 is sufficient

• When 𝐺 is bipartite, it is easy (Orientation + DFS on the DAG after BFS)

• When 𝐺 is not bipartite, it is not so easy but possible

Q. What is the essential difference?

A. BFS-honesty of Shortest Alternating Paths
(Intuitively, any prefix of a shortest path should be a shortest path.)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)
[Izumi–Kitamura–Y. 2024]

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

BFS-honesty of Shortest Alternating Paths

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

0,∞

0,∞

1,∞

2,∞

4,∞
3,∞

2,∞

1,∞

3, 4

5, 65, 6

3, 4

1, 2 1, 2

0,∞

min,max

BFS-honesty of Shortest Alternating Paths

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

0, 7

0, 7

1, 6

2, 5

3, 4
3, 4

2, 5

1, 6

3, 4

5, 65, 6

3, 4

1, 2 1, 2

0, 7

min,max

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

• ℓ = min oddlevel 𝑣 𝑣 is unmatched

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

BFS-honesty of Shortest Alternating Paths

1, 6

2, 5

3, 4

3, 40, 𝟕

2, 5

1, 6

0, 𝟕

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

• ℓ = min oddlevel 𝑣 𝑣 is unmatched

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

BFS-honesty of Shortest Alternating Paths

3, 𝟒

𝟑, 4

𝟐, 5

𝟏, 6

𝟎, 7

3, 𝟔 4, 𝟓

For each vertex 𝑣 ∈ 𝑉, define the followings.

oddlevel 𝑣 : the length of a shortest odd alternating path from an unmatched vertex

evenlevel 𝑣 : the length of a shortest even alternating path from an unmatched vertex

minlevel 𝑣 = min oddlevel 𝑣 , evenlevel 𝑣

maxlevel 𝑣 = max oddlevel 𝑣 , evenlevel 𝑣

• ℓ = min oddlevel 𝑣 𝑣 is unmatched

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

BFS-honesty of Shortest Alternating Paths

1, 𝟖

2, 𝟕

3, 4

3, 4

𝟎,∞
𝟒, 5

𝟏, 8 𝟐, 7
𝟑, 6

𝟗,∞

𝟓?

𝟔?

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

◦ All odd/evenlevels are assigned by their neighbors via BFS

◦ The parity is determined by the roots of BFS (in which side of bipartition)

◦ Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

Computing Odd/Evenlevels

1, 6

2, 5

3, 4

3, 40, 7

2, 5

1, 6

0, 7

3, 6 4, 5

, 𝟔

, 𝟓

, 𝟒

𝟑,, 𝟕

𝟐,

𝟏,

𝟎,

, 𝟔 , 𝟓

𝟏,

𝟐,

𝟑,

, 𝟒𝟎,

, 𝟓

, 𝟔

, 𝟕

𝟑, 𝟒,

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

◦ All odd/evenlevels are assigned by their neighbors via BFS

◦ The parity is determined by the roots of BFS (in which side of bipartition)

◦ Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

◦ Still, all minlevels are assigned by their neighbors in a BFS-like manner

◦ Who does assign maxlevels? → Bridge!

Computing Odd/Evenlevels

• 𝐺 is bipartite

⟹ any prefix of any odd/evenlevel path attains odd/evenlevel (BFS-honest)

◦ All odd/evenlevels are assigned by their neighbors via BFS

◦ The parity is determined by the roots of BFS (in which side of bipartition)

◦ Easy to find maximal disjoint shortest augmenting paths (by DFS on the DAG after BFS)

• 𝐺 is not bipartite

⟹ a prefix of an odd/evenlevel path may not attain odd/evenlevel

◦ Still, all minlevels are assigned by their neighbors in a BFS-like manner

◦ Who does assign maxlevels? → Bridge!

Computing Odd/Evenlevels

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)
[Izumi–Kitamura–Y. 2024]

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

• When 𝑒 ∈ 𝑀,

◦ evenlevel 𝑢 = maxlevel 𝑢

◦ evenlevel 𝑤 = maxlevel 𝑤

• When 𝑒 ∈ 𝐸 ∖ 𝑀,

◦ oddlevel 𝑢 = maxlevel 𝑢 or oddlevel 𝑢 < evenlevel 𝑤 + 1

◦ oddlevel 𝑤 = maxlevel 𝑤 or oddlevel 𝑤 < evenlevel 𝑢 + 1

Bridges and Tenacity
def

𝟏, 8

𝟐, 7

𝟑, 4

𝟑, 4

0,∞
𝟒, 5

𝟏, 8 𝟐, 7
𝟑, 6

𝟗,∞

1, 8

2, 7

3, 4

3, 4

0,∞
4, 5

1, 8 2, 7
3, 6

9,∞

An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

• When 𝑒 ∈ 𝑀,

◦ evenlevel 𝑢 = maxlevel 𝑢

◦ evenlevel 𝑤 = maxlevel 𝑤

• When 𝑒 ∈ 𝐸 ∖ 𝑀,

◦ oddlevel 𝑢 = maxlevel 𝑢 or oddlevel 𝑢 < evenlevel 𝑤 + 1

◦ oddlevel 𝑤 = maxlevel 𝑤 or oddlevel 𝑤 < evenlevel 𝑢 + 1

Bridges and Tenacity
def

𝟑,

, 𝟓

, 𝟒

, 𝟒
𝑒

𝑒

An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

Tenacity of a bridge 𝑒 = 𝑢𝑤 or a vertex 𝑣 ∈ 𝑉 is defined as follows:

• tenacity 𝑒 ≔ ቊ
oddlevel 𝑢 + oddlevel 𝑤 + 1 𝑒 ∈ 𝑀
evenlevel 𝑢 + evenlevel 𝑤 + 1 𝑒 ∈ 𝐸 ∖ 𝑀

• tenacity 𝑣 ≔ oddlevel 𝑣 + evenlevel 𝑣 = minlevel 𝑣 + maxlevel 𝑣 𝑣 ∈ 𝑉

Maxlevel of a vertex of tenacity 𝑡 is assigned by a bridge of tenacity 𝑡

Bridges and Tenacity
def

𝑡 = 7 𝑡 = 9
𝟑,

𝟑, , 𝟒

𝟒,

An edge 𝑒 = 𝑢𝑤 is a Bridge ⟺ 𝑒 does not assign the minlevel of either vertex 𝑢 or 𝑤

Tenacity of a bridge 𝑒 = 𝑢𝑤 or a vertex 𝑣 ∈ 𝑉 is defined as follows:

• tenacity 𝑒 ≔ ቊ
oddlevel 𝑢 + oddlevel 𝑤 + 1 𝑒 ∈ 𝑀
evenlevel 𝑢 + evenlevel 𝑤 + 1 𝑒 ∈ 𝐸 ∖ 𝑀

• tenacity 𝑣 ≔ oddlevel 𝑣 + evenlevel 𝑣 = minlevel 𝑣 + maxlevel 𝑣 𝑣 ∈ 𝑉

Maxlevel of a vertex of tenacity 𝑡 is assigned by a bridge of tenacity 𝑡

Bridges and Tenacity
def

𝑡 = 7 𝑡 = 9
1, 𝟖

2, 𝟕

4, 𝟓
1, 𝟖 2, 𝟕

3, 𝟔

3, 𝟒

3, 𝟒

O 𝑛𝑚 -time Algorithm for General Matching

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

These are synchronized in ascending order of 𝑖 and
𝑡

2
.

[Micali–Vazirani 1980; Vazirani 2024]

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

For each 𝑢 ∈ 𝑉 with Τodd evenlevel 𝑢 = 𝑖 − 1 and each consistent neighbor 𝑤 of 𝑢,

if minlevel 𝑤 ≥ 𝑖, then update minlevel 𝑤 ← 𝑖 and declare 𝑢 as a predecessor of 𝑤.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]

oddlevel 𝑢 = 𝑖 − 1

𝑢 𝑤

evenlevel 𝑢 = 𝑖 − 1

𝑢

minlevel 𝑤 ≥ 𝑖

minlevel 𝑤1 ≥ 𝑖

minlevel 𝑤2 < 𝑖

𝑤1

𝑤2

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

For each 𝑢 ∈ 𝑉 with Τodd evenlevel 𝑢 = 𝑖 − 1 and each consistent neighbor 𝑤 of 𝑢,

if minlevel 𝑤 ≥ 𝑖, then update minlevel 𝑤 ← 𝑖 and declare 𝑢 as a predecessor of 𝑤.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]

oddlevel 𝑢 = 𝑖 − 1

𝑢 𝑤

evenlevel 𝑢 = 𝑖 − 1

𝑢

𝑤1

𝑤2
minlevel 𝑤 = 𝑖

minlevel 𝑤1 = 𝑖

minlevel 𝑤2 < 𝑖

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

For each bridge 𝑒 = 𝑢𝑤 with tenacity 𝑒 = 𝑡, by Double Depth First Search (DDFS),

find the blossom with its bud, or a shortest augmenting path when 𝑡 = ℓ.

If such a path is found, recursively remove the vertices that can no longer be used.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]

𝑡 = 7
𝑢

𝑤

blossom

bud maxlevel 𝑣
= 𝑡 − minlevel 𝑣 𝑣

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

For each bridge 𝑒 = 𝑢𝑤 with tenacity 𝑒 = 𝑡, by Double Depth First Search (DDFS),

find the blossom with its bud, or a shortest augmenting path when 𝑡 = ℓ.

If such a path is found, recursively remove the vertices that can no longer be used.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]

𝑡 = 9
𝑢

𝑤

𝑏𝑢

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

For each bridge 𝑒 = 𝑢𝑤 with tenacity 𝑒 = 𝑡, by Double Depth First Search (DDFS),

find the blossom with its bud, or a shortest augmenting path when 𝑡 = ℓ.

If such a path is found, recursively remove the vertices that can no longer be used.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]

𝑡 = 9
𝑢

𝑤

𝑏𝑢

Do the following in O 𝑚 time in each phase:

Procedure MIN: Find minlevels of all vertices of minlevel 𝑖 = 1, 2, … ,
ℓ−1

2
in this order.

Procedure MAX: Find maxlevels of all vertices of tenacity 𝑡 = 3, 5,… , ℓ in this order.

These are synchronized in ascending order of 𝑖 and
𝑡

2
.

[Remark]

• Synchronization of the two procedures is essential;

intuitively, it finds minlevels and processes bridges (blossoms) in a BFS-like manner.

• Odd/evenlevel paths (also in blossoms) are recursively constructed in linear time;

this part is also nontrivial due to nested blossoms, which are shown to be well-structured.

O 𝑛𝑚 -time Algorithm for General Matching
[Micali–Vazirani 1980; Vazirani 2024]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

[Izumi–Kitamura–Y. 2024]

Distributed Situation

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message
through each of its incident edges

CONGEST Model

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message of O log 𝑛 bits
through each of its incident edges in each synchronous round

Question and Trivial Upper Bound

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message of O log 𝑛 bits
through each of its incident edges in each synchronous round

Q. How many rounds are sufficient to solve a problem on the graph?

A. By deciding a leader vertex and gathering all information to it,
most problems are solved in O 𝑚 = O 𝑛2 rounds.

Q. How faster can it be?

Question and Trivial Upper Bound

• Computers form a communication network (graph)

• Each vertex has sufficient computational power

• Each vertex only knows the local information, itself and its neighbors

• Each vertex can send and receive a message of O log 𝑛 bits
through each of its incident edges in each synchronous round

Q. How many rounds are sufficient to solve a problem on the graph?

A. By deciding a leader vertex and gathering all information to it,
most problems are solved in O 𝑚 = O 𝑛2 rounds.

Q. How faster can it be?

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than Θ 𝑛2 rounds?

• O 𝜇2 -round deterministic algorithm [Ben-Basat–Kawarabayashi–Schwartzman 2019]

• O 𝜇 log 𝜇 -round deterministic algorithm for bipartite graphs
[Ahmadi–Kuhn–Oshman 2018]

• O 𝜇 -round randomized algorithm to verify maximality of a matching
[Ahmadi–Kuhn 2020]

• O 𝜇1.5 -round randomized algorithm [Kitamura–Izumi 2022]

• O 𝜇 log 𝜇 -round randomized algorithm [Izumi–Kitamura–Y. 2024]

𝜇 = O 𝑛 : opt. value

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than Θ 𝑛2 rounds?

• O 𝜇2 -round deterministic algorithm [Ben-Basat–Kawarabayashi–Schwartzman 2019]

• O 𝜇 log 𝜇 -round deterministic algorithm for bipartite graphs
[Ahmadi–Kuhn–Oshman 2018]

• O 𝜇 -round randomized algorithm to verify maximality of a matching
[Ahmadi–Kuhn 2020]

• O 𝜇1.5 -round randomized algorithm [Kitamura–Izumi 2022]

• O 𝜇 log 𝜇 -round randomized algorithm [Izumi–Kitamura–Y. 2024]

𝜇 = O 𝑛 : opt. value

Exact Algorithms for Maximum Matching

Q. How faster can we find a maximum matching than Θ 𝑛2 rounds?

• O 𝜇2 -round deterministic algorithm [Ben-Basat–Kawarabayashi–Schwartzman 2019]

• O 𝜇 log 𝜇 -round deterministic algorithm for bipartite graphs
[Ahmadi–Kuhn–Oshman 2018]

• O 𝜇 -round randomized algorithm to verify maximality of a matching
[Ahmadi–Kuhn 2020]

• O 𝜇1.5 -round randomized algorithm [Kitamura–Izumi 2022]

• O 𝜇 log 𝜇 -round randomized algorithm [Izumi–Kitamura–Y. 2024]

𝜇 = O 𝑛 : opt. value

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O log 𝜇 in amortized sense.

• FP 𝑛,𝑚 = O ℓ is sufficient with the aid of Hopcroft–Karp analysis.

• We can restrict a situation (with end vertices and odd/evenlevels known)

with the aid of Ahmadi–Kuhn Matching Verification algorithm.

Road to O 𝜇 log 𝜇 -round Algorithm [Izumi–Kitamura–Y. 2024]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O log 𝜇 in amortized sense.

• FP 𝑛,𝑚 = O ℓ is sufficient with the aid of Hopcroft–Karp analysis.

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

Road to O 𝜇 log 𝜇 -round Algorithm [Izumi–Kitamura–Y. 2024]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O log 𝜇 in amortized sense.

• FP 𝑛,𝑚 = O ℓ is sufficient with the aid of Hopcroft–Karp analysis.

• We can restrict a situation (with end vertices and odd/evenlevels known)

with the aid of Ahmadi–Kuhn Matching Verification algorithm.

Road to O 𝜇 log 𝜇 -round Algorithm [Izumi–Kitamura–Y. 2024]

[Izumi–Kitamura–Y. 2024]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

Matching Verification in O min {𝜇, ℓ} Rounds
[Ahmadi–Kuhn 2020]

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph, 𝑀 ⊆ 𝐸: Matching

Goal: Do the correct one of the following two candidates:

• Determine that 𝑀 is maximum.

• Find a pair of end vertices of a shortest augmenting path w.r.t. 𝑀,
compute odd/evenlevels from one of the end vertices up to ℓ.

1, 8

2, 7

3, 4

3, 4

0,∞
4, 5

1, 8 2, 7
3, 6

9,∞
𝑠

Matching Verification in O min {𝜇, ℓ} Rounds
[Ahmadi–Kuhn 2020]

Thm. This problem is solved by a randomized CONGEST algorithm

that terminates in O 𝜇 rounds (former) and in O ℓ rounds (latter)

"We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm
to compute a maximum matching in time ෨𝑂 𝑠∗ , where 𝑠∗ is the size of a maximum matching."

Input: 𝐺 = 𝑉, 𝐸 : Undirected Graph, 𝑀 ⊆ 𝐸: Matching

Goal: Do the correct one of the following two candidates:

• Determine that 𝑀 is maximum.

• Find a pair of end vertices of a shortest augmenting path w.r.t. 𝑀,
compute odd/evenlevels from one of the end vertices up to ℓ.

[Izumi–Kitamura–Y. 2024]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O log 𝜇 in amortized sense.

• FP 𝑛,𝑚 = O ℓ is sufficient with the aid of Hopcroft–Karp analysis.

• We can restrict a situation (with end vertices and odd/evenlevels known)

with the aid of Ahmadi–Kuhn Matching Verification algorithm.

Road to O 𝜇 log 𝜇 -round Algorithm [Izumi–Kitamura–Y. 2024]

O 𝜇1.5 -round Algorithm [Kitamura–Izumi 2022]

[Naive Algorithm]

1. 𝑀 ← ∅

2. While ∃𝑃: augmenting path w.r.t. 𝑀, find it and update 𝑀 ← 𝑀△ 𝑃

O 𝜇 ⋅ FP 𝑛,𝑚 time (FP ⋅ : time to find an augmenting path)

• It suffices to upper-bound FP 𝑛,𝑚 by O 𝜇 in amortized sense.

• FP 𝑛,𝑚 = O min ℓ2, 𝜇 is sufficient with the aid of HK analysis.

• We can restrict a situation (with end vertices and odd/evenlevels known)

with the aid of Ahmadi–Kuhn Matching Verification algorithm.

O 𝜇1.5 -round Algorithm [Kitamura–Izumi 2022]

FP 𝑛,𝑚 = O min ℓ2, 𝜇 is sufficient with the aid of Hopcroft–Karp analysis

Lem. A matching 𝑀 is of cardinality 𝜇 − 𝑘 1 ≤ 𝑘 ≤ 𝜇

⟹ ∃𝑃: augmenting path w.r.t. 𝑀 of length less than
2𝜇

𝑘

• In the first 𝜇 − 𝜇 augmentations, use an O ℓ2 -round algorithm.

෍

𝑘=0

𝜇− 𝜇
2𝜇

𝜇 − 𝑘

2

= 4𝜇2 ෍

𝑗= 𝜇

𝜇
1

𝑗

2

≈ 4𝜇2න
𝜇

𝜇

𝑥−2d𝑥 ≈ 4𝜇2 ⋅
1

2 𝜇
= 2𝜇1.5

• In the last 𝜇 augmentations, use an O 𝜇 -round algorithm.

Find Augmenting Path in O min ℓ2, 𝜇 Rounds
[Kitamura–Izumi 2022]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O 𝜇 -round is achieved by Construction of Sparse Subgraph:

◦ It consists of O 𝜇 edges.

◦ It preserves at least one odd/even alternating paths from one end vertex.

◦ In particular, it contains an augmenting path.

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

Find Augmenting Path in O min ℓ2, 𝜇 Rounds
[Kitamura–Izumi 2022]

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O 𝜇 -round is achieved by Construction of Sparse Subgraph:

◦ It consists of O 𝜇 edges.

◦ It preserves at least one odd/even alternating paths from one end vertex.

◦ In particular, it contains an augmenting path.

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

How to Reduce to O ℓ Rounds

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O 𝜇 -round is achieved by Construction of Sparse Subgraph:

◦ It consists of O 𝜇 edges.

◦ It preserves at least one odd/even alternating paths from one end vertex.

◦ In particular, it contains an augmenting path (which can be arbitrarily long!).

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph exists because of the correctness of Edmonds' blossom algorithm!

[Izumi–Kitamura–Y. 2024]

How to Reduce to O ℓ Rounds

Both algorithms are based on Ahmadi–Kuhn Matching Verification

• O ℓ2 -round is straightforward:

A path is constructed from one end vertex by finding a predecessor one-by-one.

• O ℓ -round is achieved by Construction of Sparse Subgraph:

◦ All the vertices are of tenacity (= oddlevel + evenlevel) at most ℓ.

◦ It preserves at least one shortest odd/even alternating paths between necessary pairs.

◦ In particular, it contains (and is enough to reconstruct) a shortest augmenting path.

→ Gathering all information to a leader and distributing the result in the subgraph.

Such a subgraph is constructed by getting inspiration from Micali–Vazirani algorithm!

[Izumi–Kitamura–Y. 2024]

[Izumi–Kitamura–Y. 2024]

Outline

• Basics: Augmenting Paths and Algorithm Framework

• O 𝑛𝑚 -time Algorithm (Centralized)

◦ Update with Maximal Disjoint Shortest Augmenting Paths

◦ BFS-honesty of Shortest Alternating Paths: Bipartite vs. General

◦ Overview of O 𝑛𝑚 -time Algorithm in General

• O 𝑛 log 𝑛 -round Algorithm under CONGEST Model (Distributed)

◦ O 𝑛 -round Matching Verification Algorithm

◦ O 𝑛1.5 -round Algorithm (Augmenting Path in O 𝑛 rounds)

◦ O 𝑛 log 𝑛 -round Algorithm (Augmenting Path of Length ℓ in O ℓ rounds)

[Hopcroft–Karp 1973]

[Micali–Vazirani 1980; Vazirani 2024]

[Kőnig 1931; Edmonds 1965]

[Kitamura–Izumi 2022]

[Ahmadi–Kuhn 2020]

	スライド 1: Fast Algorithms for Finding a Maximum Matching —Centralized and Distributed—
	スライド 2: Maximum Matching Problem
	スライド 3: Outline
	スライド 4: Outline
	スライド 5: Maximum Matching Problem
	スライド 6: Augmenting Paths
	スライド 7: Augmenting Paths
	スライド 8: Augmenting Paths
	スライド 9: Augmenting Path Algorithm for Bipartite Matching
	スライド 10: Augmenting Path Algorithm for Bipartite Matching
	スライド 11: Augmenting Path Algorithm for Bipartite Matching
	スライド 12: Augmenting Path Algorithm for Bipartite Matching
	スライド 13: Edmonds' Blossom Algorithm for General Matching
	スライド 14: Edmonds' Blossom Algorithm for General Matching
	スライド 15
	スライド 16: Edmonds' Blossom Algorithm for General Matching
	スライド 17: Edmonds' Blossom Algorithm for General Matching
	スライド 18: Edmonds' Blossom Algorithm for General Matching
	スライド 19
	スライド 20: Edmonds' Blossom Algorithm for General Matching
	スライド 21: Edmonds' Blossom Algorithm for General Matching
	スライド 22: Edmonds' Blossom Algorithm for General Matching
	スライド 23: Edmonds' Blossom Algorithm for General Matching
	スライド 24: Outline
	スライド 25: Augmenting Paths
	スライド 26: Length of Shortest Augmenting Paths
	スライド 27: Update with Maximal Shortest Augmenting Paths
	スライド 28: Fast Algorithm for Maximum Matching Problem
	スライド 29: Fast Algorithm for Maximum Matching Problem
	スライド 30: Fast Algorithm for Maximum Matching Problem
	スライド 31: Fast Algorithm for Maximum Matching Problem
	スライド 32: Maximum Matching in O 左小かっこ へいほうこん の n 、 m 右小かっこ Time
	スライド 33: Maximum Matching in O 左小かっこ へいほうこん の n 、 m 右小かっこ Time
	スライド 34: Maximum Matching in O 左小かっこ へいほうこん の n 、 m 右小かっこ Time
	スライド 35: Outline
	スライド 36: BFS-honesty of Shortest Alternating Paths
	スライド 37: BFS-honesty of Shortest Alternating Paths
	スライド 38: BFS-honesty of Shortest Alternating Paths
	スライド 39: BFS-honesty of Shortest Alternating Paths
	スライド 40: BFS-honesty of Shortest Alternating Paths
	スライド 41: Computing Odd/Evenlevels
	スライド 42: Computing Odd/Evenlevels
	スライド 43: Computing Odd/Evenlevels
	スライド 44: Outline
	スライド 45: Bridges and Tenacity
	スライド 46: Bridges and Tenacity
	スライド 47: Bridges and Tenacity
	スライド 48: Bridges and Tenacity
	スライド 49: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 50: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 51: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 52: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 53: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 54: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 55: O 始めかっこ へいほうこん の n 、 m , 終わりかっこ -time Algorithm for General Matching
	スライド 56: Outline
	スライド 57: Distributed Situation
	スライド 58: CONGEST Model
	スライド 59: Question and Trivial Upper Bound
	スライド 60: Question and Trivial Upper Bound
	スライド 61: Exact Algorithms for Maximum Matching
	スライド 62: Exact Algorithms for Maximum Matching
	スライド 63: Exact Algorithms for Maximum Matching
	スライド 64: Road to O 始めかっこ ミュー log ミュー 、 , 終わりかっこ -round Algorithm
	スライド 65: Road to O 始めかっこ ミュー log ミュー 、 , 終わりかっこ -round Algorithm
	スライド 66: Road to O 始めかっこ ミュー log ミュー 、 , 終わりかっこ -round Algorithm
	スライド 67: Outline
	スライド 68: Matching Verification in O 始めかっこ 、 min 、 、 の 、 左中かっこ ミュー ,、 、 ℓ 右中かっこ , 終わりかっこ Rounds
	スライド 69: Matching Verification in O 始めかっこ 、 min 、 、 の 、 左中かっこ ミュー ,、 、 ℓ 右中かっこ , 終わりかっこ Rounds
	スライド 70: Outline
	スライド 71: Road to O 始めかっこ ミュー log ミュー 、 , 終わりかっこ -round Algorithm
	スライド 72: O 始めかっこ ミュー じょう 1.5 、 , 終わりかっこ -round Algorithm
	スライド 73: O 始めかっこ ミュー じょう 1.5 、 , 終わりかっこ -round Algorithm
	スライド 74: Find Augmenting Path in O 始めかっこ 、 min 、 、 の 左中かっこ ℓ 2 じょう,ミュー 右中かっこ 、 , 終わりかっこ Rounds
	スライド 75: Find Augmenting Path in O 始めかっこ 、 min 、 、 の 左中かっこ ℓ 2 じょう,ミュー 右中かっこ 、 , 終わりかっこ Rounds
	スライド 76: How to Reduce to O 始めかっこ ℓ , 終わりかっこ Rounds
	スライド 77: How to Reduce to O 始めかっこ ℓ , 終わりかっこ Rounds
	スライド 78: Outline
	スライド 79

